METAL BAR GRATING AMERICAN NATIONAL STANDARD ANSI/NAAMM STANDARD MBG 531 -17

METAL BAR GRATING MANUAL

EIGHTH EDITION

•	Maximum	Bearing	Bar	Depth	2 ¹ /2"	(63.5 mm)	
---	---------	---------	-----	-------	---------------------------	-----------	--

- Maximum Bearing Bar Thickness
 Steel & Stainless Steel.....³/16" (4.8 mm)
 Aluminum.....¹/4" (6.4 mm)
- Maximum Depth of I-Bar 2¹/2" (63.5 mm)

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretation should be addressed to the sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

This standard was developed by representative members of the Metal Bar Grating Division (MBG) of the National Association of Architectural Metal Manufacturers (NAAMM) to provide their opinion and guidance on the design and specification of metal bar gratings. This standard contains advisory information only and is published as a public service by NAAMM. NAAMM and its Divisions disclaim all liability of any kind for the use, application, or adaptation of material published in this standard.

Current information on all NAAMM Standards is available by calling or writing the National Association of Architectural Metal Manufacturers or by going to www.naamm.org.

National Association of Architectural Metal Manufacturers 800 Roosevelt Road Bldg. C, Suite 312 Glen Ellyn, Illinois 60137 Phone: (630) 942-6591 Fax: (630) 790-3095 www.naamm.org

Copyright © 1967, 1974, 1979, 1988, 1994 (Reprinted 1997), 2001, 2009, 2017 National Association of Architectural Metal Manufacturers All Rights Reserved

METAL BAR GRATING MANUAL

For Steel, Stainless Steel, and Aluminum Gratings and Stair Treads

Eighth Edition

NAAMM MBG 531

Published and distributed by the

NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS

800 Roosevelt Road Bldg. C, Suite 312 Glen Ellyn, Illinois 60137 Phone: (630) 942-6591 www.naamm.org email: info@naamm.org

NAAMM'S METAL BAR GRATING DIVISION

The members of the Metal Bar Grating Division of the National Association of Architectural Metal Manufacturers have supported the preparation of this Manual. All are producers and/or suppliers of products conforming to the standards and specifications contained herein. A copy of the Membership Roster of the Metal Bar Grating Division is available from NAAMM at www.naamm.org.

FOREWORD

The NAAMM Metal Bar Grating Manual provides architects and engineers with current technical data on bar gratings and stair treads of steel, stainless steel, and aluminum. The information contained is based on sound engineering principles and reflects practices recommended by leading manufacturers in the industry.

The first seven editions of the manual have been widely used by the design professions. In preparing this eighth edition, the Metal Bar Grating Division of NAAMM has reviewed its contents in detail and has made revisions to reflect current practices.

The load tables in this edition are based on the design formulas and procedures found in ANSI/NAAMM MBG 534-14 Metal Bar Grating Engineering Design Manual, which was developed to provide a clearer understanding of the procedures used in the design of grating and treads.

Also included are metric equivalents as an aid to designers who use the metric system. The system of metric measurement used is from IEEE/ASTM SI 10-2010, "Standard for Use of the International System of Units (SI): The Modern Metric System".

The stair treads shown in this standard have been tested and conform to the requirements of OSHA 29CFR 1910.24(c), IBC 2012.

Changes from the previous edition, ANSI/NAAMM MBG 531-09 are indicated by the placement of a vertical line next to the changed item.

VALUES EXPRESSED IN THIS MANUAL ARE IN BOTH INCH-POUND UNITS AND SI UNITS. THE VALUES STATED IN INCH-POUND UNITS ARE TO BE REGARDED AS THE STANDARD.

CONTENTS Standard Marking System4 Minimum Sizes and Tolerances of Bars7 Load Tables / Inch-Pound units Load Tables / SI units Anchoring Details......14 Installation Clearances16 Standard Tread Nosings18 Tread Dimensions and Details19 Standard Specifications24 Code of Standard Practice25

STANDARD MARKING SYSTEM

The marking system described here is the industry standard for identifying various types of bar grating. Leading manufacturers correlate their individual marking systems with this standard.

The standard marking system for metal bar gratings, as illustrated on the facing page, identifies five characteristics of the grating in the following order:

1 TYPE OF GRATING

The type of grating is indicated by a letter, as follows:

- W Welded (steel gratings only)
- P Pressure-locked
- **R** Riveted

(See Glossary for definitions of types)

2 BEARING BAR SPACING

Bearing bar spacing is designated by a number which indicates sixteenths of an inch, or mm.

For welded or pressure-locked grating this is the distance, in sixteenths of an inch, or mm, center-to-center of bars.

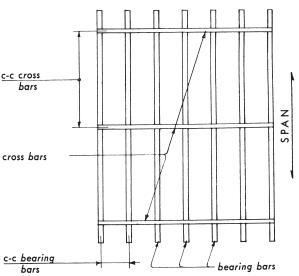
For riveted grating it is the distance, in sixteenths of an inch, or mm, between bearing bar faces.

3 CROSS BAR OR RIVET SPACING

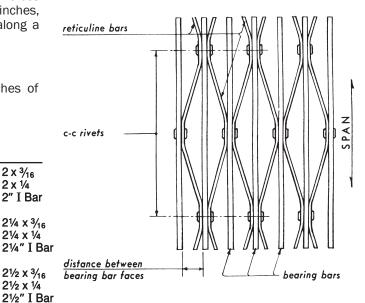
Cross bar or rivet spacing is designated by a number which indicates inches, or mm.

- For welded or pressure-locked grating this is the distance, in inches, or mm, center-to-center of cross bars. For riveted grating it is the distance in inches.
- or mm, center-to-center of rivets, measured along a single bearing bar.

4 SIZE OF BEARING BARS*


The size of bearing bars is expressed in inches of depth and thicknesses as follows:

*Equivalent bearing bar sizes in millimeters are obtained by a multiplication factor of 25.4


Steel / Stai	inless Steel		Aluminum	
3⁄4 x 1⁄8	1½ x ½	1 x 1/8	1½ x 1/8	2 x ³ ⁄ ₁₆
3/4 X 3/16	$1\frac{1}{2} \times \frac{3}{16}$	$1 \times \frac{3}{16}$	11/2 X 3/16	2 x 1⁄4
		1 x 1⁄4	11/2 x 1/4	2" I Bar
1 x 1/8	1 3⁄4 X 3⁄16	1″ I Bar	11⁄2″ I Bar	
$1 \times \frac{3}{16}$				21/4 x 3/16
	2 x ³ /16	1¼ x 1⁄a	1 3⁄4 X 3⁄16	21/4 x 1/4
1¼ x 1/8	, 10	11/4 x 3/16	1 3⁄4 x 1⁄4	2¼″ I Ba
$1\frac{1}{4} \times \frac{3}{16}$	2¼ x ¾	1¼ x ¼	1¾″ I Bar	
/10		11/4" I Bar		21/2 X 3/16
	21⁄2 x 3⁄16			21/2 x 1/4

5 MATERIAL

Grating material is designated by name, such as "steel," "stainless steel" or "aluminum".

WELDED OR PRESSURE-LOCKED GRATING

RIVETED GRATING

ANSI/NAAMM MBG 531-17

EXAMPLES OF USE OF STANDARD MARKING SYSTEM

TYPE

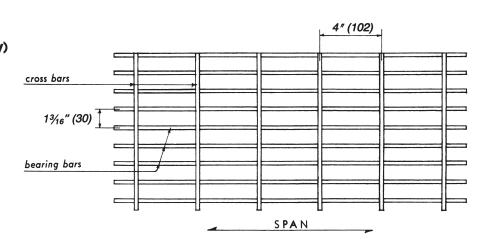
DESCRIPTION OF GRATING DESIGNATED

W-19-4 (1 x ³ / ₁₆) steel W-30-102 (25 x 4.8)	W 19 4 (1 x ³ ⁄ ₁₆) STEEL	welded bearing bars spaced $1\frac{3}{16}$ in. (30 mm) on center cross bars spaced 4 in. (102 mm) on center bearing bar size, 1 in. $x\frac{3}{16}$ in. (25 mm x 4.8 mm) material
R-18-7 (1 ^{1/4} x ^{1/8}) stainless steel R-29-178 (32 x 3.2)	R 18 7 (1¼ x ⅓) STAINLESS STEEL	riveted bearing bars spaced 1½ in. (29 mm) between faces rivets spaced 7 in. (178 mm) on center bearing bar size, 1¼ in. x ½ in. (32 mm x 3.2 mm) material
P-15-2 (1 ^{1/4} x ^{3/} 16) ALUMINUM P-24-51 (32 x 4.8)	P 15 2 (1¼ x ¾ ₁₆) ALUMINUM	pressure-locked bearing bars spaced $^{15}/_{16}$ in. (24 mm) on center cross bars spaced 2 in. (51 mm) on center bearing bar size, $1^{1}/_{4}$ in. x $^{3}/_{16}$ in. (32 mm x 4.8 mm) material
P-19-4 (1 ^{1/} 2 I Bar) ALUMINUM P-30-102 (38 I Bar)	P 19 4 (1½ in. I Bar) ALUMINUM	pressure-locked bearing bars spaced 1 ³ / ₁₆ in. (30 mm) on center cross bars spaced 4 in. (102 mm) on center bearing bar size, 1 ¹ / ₂ in. I Bar (38 mm I Bar) material

Manufacturers are equipped to produce gratings having bearing bars and cross bars of other sizes and spacings than shown in this Manual, as well as gratings of other metals, such as bronze, brass, monel, magnesium and special steel alloys. Minimum and maximum sizes and spacings are determined by equipment and/or design factors.

While gratings are normally furnished with a finish as indicated in Section V of the Standard Specifications Section, a wide variety of non-standard finishes can be applied to address specific job and/or function requirements.

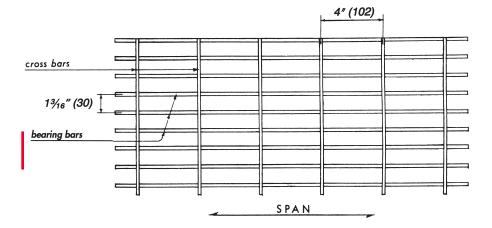
Individual manufacturers should be consulted regarding all non-standard products and/or finishes.


STANDARD

GRATINGS

See GLOSSARY OF TERMS for definitions of Welded, Pressure-locked, and Riveted Gratings

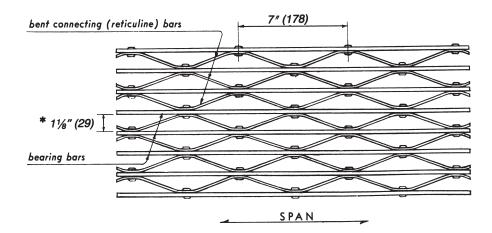
WELDED (Steel and Stainless Steel only)


Type W-19-4 (W-30-102)

PRESSURE-LOCKED

Type P-19-4 (P-30-102)

Cross bar ends are peened, bent over, welded, otherwise locked, or allowed to extend, at the manufacturer's discretion.



RIVETED*

Type R-18-7 (R-29-178)

Riveted grating is also available with a double crimp in the reticuline bar:

*Note that riveted grating marking indicates space between bearing bars

MINIMUM STANDARD SIZES AND TOLERANCES

STEEL / STAINLESS STEEL

WELDED*

PRESSURE - LOCKED

MINIMUM STANDARD SIZES

CROSS BARS and CONNECTING BARS

E	Bearing Bars	Minimum Cross Bar Size					
Thickness in. (mm)	Depth in. (mm)	Section Area in. ² (mm ²)	Weight Ib/ft (kg/m)				
1/8 (3.2)	³ /4 (19) thru 1 (25)	.031 (20)	.107 (.159)				
1/8 (3.2)	11/4 (32) thru 11/2 (38)	.049 (32)	.167 (.248)				
³ /16 (4.8)	³ /4 (19) thru 1 ¹ /2 (38)	.049 (32)	.167 (.248)				
³ /16 (4.8)	1 ³ /4 (44) thru 2 ¹ /2 (64)	.062 (40)	.211 (.314)				

*Minimum size shown is for cross bars on 4 inch centers. When cross bars are on 2 inch centers, the minimum size may be reduced by 25%.

STEEL / STAINLESS STEEL / ALUMINUM

Cross bars are made in a variety of solid and hollow shapes. They can be of any size and configuration which will provide structural stability under the stated design loads.

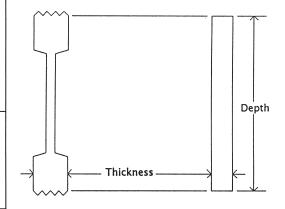
ALUMINUM	RIVETED									
	Minimum Size of	Connecting								
Bearing Bar Depth	(Reticuline) Bars									
in. (mm)	Thickness	Depth								
	in. (mm)	in. (mm)								
1 (25)	1/8 (3.2)	⁵ /8 (16)								
11/4 (32) thru 13/4 (44)	1/8 (3.2)	³ /4 (19)								
2 (51) thru 21/2 (64)	1/8 (3.2)	1 (25)								

STEEL / STAINLESS STEEL

RIVETED

Bearing Bar Depth	Minimum Size of Connecting (Reticuline) Bars								
in. (mm)	Thickness in. (mm)	Depth in. (mm)							
³ /4 (19)	1/8 (3.2)	⁵ /8 (16)							
1 (25) thru 1 ³ /4 (44)	¹ /8 (3.2)	³ /4 (19)							
2 (51) thru 21/2 (64)	1/8 (3.2)	1 (25)							

TOLERANCES - Bearing Bars


ALUMINUM

Thicknes	s ±0.007 in. (±0.2 mm)	for ½" (3.2) and ½6″ (4.8)
	±0.008 in. (±0.2 mm)	for ¼″ (6.4)
Depth	±0.012 in. (±0.3 mm)	for 1"(25) and 1¼" (32) depths
	±0.014 in. (±0.4 mm)	for 11/2" (38) and 13/4" (44) depths
	±0.024 in. (±0.6 mm)	for 2" (51) thru 2½" (63) depths

STEEL/STAINLESS STEEL

Thicknes	s ±0.009 in. (±0.23 mm)	for all thicknesses
Depth	±0.016 in. (±0.4 mm)	for ¾" (19) thru 1¾" (44) depths
	±0.024 in. (±0.6 mm)	for 2" (51) thru 2½" (63) depths

NOTE: The following references were used as a guide in establishing the above bearing bar tolerances: ASTM A 1011A (1011M) Commercial Steel Type B, ASTM A 510 (A510M); ASTM B 221 (B221M), ASTM B 210 (B210M); Aluminum Association standards and data (extruded shapes).

LOAD TABLE FOR STEEL GRATING - TYPE W-19 OR P-19

ASTM A 1011 CS TYPE B

See Appendix A for a graphic depicting table loading

F=18,000psi,								osi, l	E=29,0	000,00	00psi		de	picting	j table	loadin	g				
	. Г		ommen ection u						All loads and deflections shown are based on engineering computations using gross sections and nominal sizes of bearing bars. The values listed are for												
Bearing																re for					
Bar			U=unit	form loa	id, psf					n select											
Size			D=def	lection,	in.				"absc	olute" sir	nce actu	ial load	capacity	y will be	affecte	d					
(in)			C=con	centrat	ed load	at mid-s	span,		slight	ly by va	riations	which c	an be e	expected	due to	1					
Nominal			Ibp	er foot	of gratir	g width	-		mater	rial and	manufa	cturing	tolerand	es.							
Weight					Span in																
_ (psf)** _	V	V	24	30	36	42	48	54	Note	The ca	rrying c	apacity	of a pi	a piece of grating subjected							
		U	355	227	158	116	89	70	toad	oncent	rated lo	ad over	only a								
3/4x1/8	42	Du	0.099	0.155	0.223	0.304	0.397	0.503	to a concentrated load over only a portion of its width i determined by the stiffness of both the bearing bars ar												
	1	c	355	284	237	203	178	158		ross ba											
[4]		Dc	0.079	0.124	0.179	0.243	0.318	0.402		ng used											
		U	533	341	237	174	133	105		igs subj											
3/4x3/16	46	Du	0.099	0.155	0.223	0.304	0.397	0.503		neering						0,0					
3/4x3/10	40		533	426	355	305	266	237	engii	leening	departir	ient an		consun							
101		C						0.402	60	66	72		Convo	rsion Fa	actore.						
[6]		Dc	0.079	0.124	0.179	0.243	0.318	125	101	84	70	For		with oth		1_2/16					
4.40		U	632	404	281						0.670			spacing							
1x1/8	51	Du	0.074	0.116	0.168	0.228	0.298	0.377	0.466	0.563							ι.				
		C	632	505	421	361	316										the				
[6]	I	Dc	0.060	0.093	0.134	0.182	0.238	0.302	0.372	0.451	0.536										
		U	947	606	421	309	237	187	152	125	105			rating E							
1x3/16	57	Du	0.074	0.116	0.168	0.228	0.298	0.377	0.466	0.563	0.670	1		ne deve	iopmer	nt of suc	n:				
		C	947	758	632	541	474	421	379	344	316	facto	1	1							
[8]		Dc	0.060	0.093	0.134	0.182	0.238	0.302	0.372	0.451	0.536	78	84			conside					
	1	U	987	632	439	322	247	195	158	130	110	93	81		maximum deflection						
1-1/4x1/8	61	Du	0.060	0.093	0.134	0.182	0.238	0.302	0.372	0.451	0.536	0.629	0.730		stent w						
		C	987	789	658	564	493	439	395	359	329	304	282			omfort,					
[7]		Dc	0.048	0.074	0.107	0.146	0.191	0.241	0.298	0.360	0.429	0.504	0.584	-		eded fo					
		U	1480	947	658	483	370	292	237	196	164	140	121	other loading conditions							
1-1/4x3/16	67	Du	0.060	0.093	0.134	0.182	0.238	0.302	0.372	0.451	0.536	0.629	0.730	at the	at the discretion of the						
		C	1480	1184	987	846	740	658	592	538	493	455	423	engineer.							
[9]		Dc	0.048	0.074	0.107	0.146	0.191	0.241	0.298	0.360	0.429	0.504	0.584	90	96	102	108				
		U	1421	909	632	464	355	281	227	188	158	135	116	101	89	79	70				
1-1/2x1/8	70	Du	0.050	0.078	0.112	0.152	0.199	0.251	0.310	0.376	0.447	0.524	0.608	0.698	0.794	0.897	1.006				
		c	1421	1137	947	812	711	632	568	517	474	437	406	379	355	334	316				
[8]		Dc	0.040	0.062	0.089	0.122	0.159	0.201	0.248	0.300	0.358	0.420	0.487	0.559	0.636	0.718	0.804				
		U	2132	1364	947	696	533	421	341	282	237	202	174	152	133	118	105				
1-1/2x3/16	77	Du	0.050	0.078	0.112	0.152	0.199	0.251	0.310	0.376	0.447	0.524	0.608	0.698	0.794	0.897	1.006				
		C	2132	1705	1421	1218	1066	947	853	775	711	656	609	568	533	502	474				
[11]		Dc	0.040	0.062	0.089	0.122	0.159	0.201	0.248	0.300	0.358	0.420	0.487	0.559	0.636	0.718	0.804				
	1	U	2901	1857	1289	947	725	573	464	384	322	275	237	206	181	161	143				
1-3/4x3/16	87	Du	0.043	0.067	0.096	0.130	0.170	0.215	0.266	0.322	0.383	0.450	0.521	0.599	0.681	0.769	0.862				
	"	C	2901	2321	1934	1658	1451	1289	1161	1055	967	893	829	774	725	683	645				
[13]		Dc	0.034	0.053	0.077	0.104	0.136	0.172	0.213	0.257	0.306	0.360	0.417	0.479	0.545	0.615	0.689				
[13]	1	U	3789	2425	1684	1237	947	749	606	501	421	359	309	269	237	210	187				
20110					0.084	0.114	0.149	0.189	0.233	0.282	0.335	0.393	0.456	0.524	0.596	0.673	0.754				
2x3/16	96	Du	0.037	0.058			1895	1684	1516	1378	1263	1166	1083	1011	947	892	842				
	1	C	3789	3032	2526	2165		1				1			1	1					
[14]		Dc	0.030	0.047	0.067	0.091	0.119	0.151	0.186	0.225	0.268	0.315	0.365	0.419	0.477	0.538	0.603				
	1	U	4796	3069	2132	1566	1199	947	767	634	533	454	392	341	300	266	237				
2-1/4x3/16	105	Du	0.033	0.052	0.074	0.101	0.132	0.168	0.207	0.250	0.298	0.350	0.406	0.466	0.530	0.598	0.670				
	1	C	4796	3837	3197	2741	2398	2132	1918	1744	1599	1476	1370	1279	1199	1128	1066				
[16]		Dc	0.026	0.041	0.060	0.081	0.106	0.134	0.166	0.200	0.238	0.280	0.324	0.372	0.424	0.478	0.536				
	1	U	5921	3789	2632	1933	1480	1170	947	783	658	561	483	421	370	328	292				
2-1/2x3/16	113	Du	0.030	0.047	0.067	0.091	0.119	0.151	0.186	0.225	0.268	0.315	0.365	0.419	0.477	0.538	0.603				
		C	5921	4737	3947	3383	2961	2632	2368	2153	1974	1822	1692	1579	1480	1393	1316				
[18]		Dc	0.024	0.037	0.054	0.073	0.095	0.121	0.149	0.180	0.215	0.252	0.292	0.335	0.381	0.431	0.483				

NOTE: For serrated grating, the depth of grating required for a specified load is 1/4" greater than in the table.

**Weights (mass/area) shown are approximate and vary with manufacturers. They are

ANSI/NAAMM MBG 531-17 LOAD TABLE (METRIC) **STEEL GRATING**

LOAD TABLE FOR STEEL GRATING - TYPE W-19 OR P-19

ASTM A 1011 CS TYPE B F=124MPa, E=200,000MPa

									а. с	-200.		гa											
			Boo	ommor	ndad m	av ener			, _				one eh		based	00							
					nded ma Inder ur	•									oss sect		d						
Г	Bearing		acii	coleu u	inder ul	monni		non a							values								
	Bar			U=unif	form loa	d. kPa									tended		2.01						
	Size		_		ection,										y will be		d						
	(mm)				centrate		at mid-s	pan.							expected								
ſ	Nominal				per met						rial and												
	Weight						Millimete			7			Ŭ										
	_ Kg/m ² **_		\checkmark	610	762	914	1067	1219	1372	Note	The ca	arrying o	apacity	∕ of a pi	ece of g	grating s	subjecte	əd					
			U	17.01	10.89	7.56	5.55	4.25	3.36	toad	oncenti	rated lo	ad over	r only a	portion	portion of its width is							
	19x3	1054	Du	2.52	3.94	5.68	7.73	10.09	12.77	deter	mined b	by the s	tiffness	of both	the bea	aring ba	irs and						
			С	5.18	4.15	3.46	2.96	2.59	2.30						rs with ti								
_	[20]		Dc	2.02	3.15	4.54	6.18	8.07	10.22						rrying c								
			υ	25.52	16.33	11.34	8.33	6.38	5.04						the mar		rer's						
	19x5	1167	Du	2.52	3.94	5.68	7.73	10.09	12.77	engir	neering	departn	nent sh	ould be	consul	ted.							
			С	7.78	6.22	5.18	4.44	3.89	3.46			r	-										
_	[28]		Dc	2.02	3.15	4.54	6.18	8.07	10.22	1524	1676	1829	-		ersion Fa								
			U	30.24	19.35	13.44	9.87	7.56	5.97	4.84	4.00	3.36					1 30mm						
	25x3	1308	Du	1.89	2.96	4.26	5.79	7.57	9.58	11.82	14.31	17.03					differen	τ					
	1053		С	9.22	7.37	6.14	5.27	4.61	4.10	3.69	3.35	3.07			ses, pro			4h c					
_	[25]		Dc	1.51	2.36	3.41	4.64	6.05	7.66	9.46	11.45	13.62					Refer to						
	25.5		U	45.36	29.03	20.16	14.81	11.34	8.96	7.26	6.00	5.04				ering Design ent of such							
	25x5	1448	Du	1.89	2.96	4.26	5.79	7.57	9.58	11.82	14.31	17.03	factor		ne deve	opmen	n or suc	71					
	1261		C	13.83	11.06	9.22 3.41	7.90 4.64	6.91	6.14	5.53	5.03	4.61		2134	Note	61	n is con	cid					
	[36]		Dc U	1.51 47.25	2.36 30.24	21.00	4.64	6.05 11.81	7.66 9.33	9.46 7.56	11.45 6.25	13.62 5.25	1981 4.47	3.86			n is con ximum d						
	32x3	1546	Du	47.25	2.36	3.41	4.64	6.05	9.33	9.46	6.25 11.45	5.25 13.62	4.47	18.54	1		sistent w						
	5285	1540	C	14.40	11.52	9.60	8.23	7.20	6.40	5.76	5.24	4.80	4.43	4.11	1		omfort.						
	[30]		Dc	1.21	1.89	2.72	3.71	4.84	6.13	7.57	9.16	10.90	12.79	14.83			eded fo						
-	[50]		U	70.88	45.36	31.50	23.14	17.72	14.00	11.34	9.37	7.88	6.71	5.79	-		g condit						
	32x5	1711	Du	1.51	2.36	3.41	4.64	6.05	7.66	9.46	11.45	13.62		t the discretion of the									
	02/10		С	21.60	17.28	14.40	12.34	10.80	9.60	8.64	7.86	7.20	15.99 6.65	18.54 6.17	engir								
	[44]		Dc	1.21	1.89	2.72	3.71	4.84	6.13	7.57	9.16	10.90	12.79	14.83	2286	2438	2591	2743					
			U	68.04	43.55	30.24	22.22	17.01	13.44	10.89	9.00	7.56	6.44	5.55	4.84	4.25	3.77	3.36					
	38x3	1773	Du	1.26	1.97	2.84	3.86	5.04	6.39	7.88	9.54	11.35	13.32	15.45	17.74	20.18	22.78	25.54					
			С	20.74	16.59	13.83	11.85	10.37	9.22	8.30	7.54	6.91	6.38	5.93	5.53	5.18	4.88	4.61					
	[36]		Dc	1.01	1.58	2.27	3.09	4.04	5.11	6.31	7.63	9.08	10.66	12.36	14.19	16.14	18.22	20.43					
			U	102.06	65.32	45.36	33.33	25.52	20.16	16.33	13.50	11.34	9.66	8.33	7.26	6.38	5.65	5.04					
	38x5	1962	Du	1.26	1.97	2.84	3.86	5.04	6.39	7.88	9.54	11.35	13.32	15.45	17.74	20.18	22.78	25.54					
			С	31.11	24.89	20.74	17.78	15.55	13.83	12.44	11.31	10.37	9.57	8.89	8.30	7.78	7.32	6.91					
	[52]		Dc	1.01	1.58	2.27	3.09	4.04	5.11	6.31	7.63	9.08	10.66	12.36	14.19	16.14	18.22	20.43					
			υ	138.92	88.91	61.74	45.36	34.73	27.44	22.23	18.37	15.44	13.15	11.34	9.88	8.68	7.69	6.86					
	44x5	2203	Du	1.08	1.69	2.43	3.31	4.32	5.47	6.76	8.18	9.73	11.42	13.24	15.20	17.30	19.53	21.89					
			С	42.34	33.87	28.23	24.20	21.17	18.82	16.94	15.40	14.11	13.03	12.10	11.29	10.59	9.96	9.41					
_	[60]		Dc	0.86	1.35	1.95	2.65	3.46	4.38	5.41	6.54	7.78	9.13	10.59	12.16	13.84	15.62	17.51					
			U	181.44	116.12	80.64	59.25	45.36	35.84	29.03	23.99	20.16	17.18	14.81	12.90	11.34	10.05	8.96					
	51x5	2435	Du	0.95	1.48	2.13	2.90	3.78	4.79	5.91	7.15	8.51	9.99	11.59	13.30	15.13	17.09	19.16					
			С	55.30	44.24	36.87	31.60	27.65	24.58	22.12	20.11	18.43	17.02	15.80	14.75	13.83	13.01	12.29					
_	[68]		Dc	0.76	1.18	1.70	2.32	3.03	3.83	4.73	5.72	6.81	7.99	9.27	10.64	12.11	13.67	15.32					
		0077	U	229.64	146.97	102.06	74.98	57.41	45.36	36.74	30.37	25.52	21.74	18.75	16.33	14.35	12.71	11.34					
	57x5	2659	Du	0.84	1.31	1.89	2.58	3.36	4.26	5.26	6.36	7.57	8.88	10.30	11.82	13.45	15.19	17.03					
	170		C	69.99	55.99	46.66	40.00	35.00	31.11	28.00	25.45	23.33	21.54	20.00	18.66	17.50	16.47	15.55					
	[76]		Dc	0.67	1.05	1.51	2.06	2.69	3.41	4.20	5.09	6.05	7.10	8.24	9.46	10.76	12.15	13.62					
	CAF	2070		283.50	181.44	126.00	92.57	70.88	56.00	45.36	37.49	31.50	26.84	23.14	20.16	17.72	15.70	14.00					
	64x5	2878	Du		1.18	1.70	2.32	3.03	3.83	4.73	5.72	6.81	7.99	9.27	10.64	12.11	13.67	15.32					
	10.41		C	86.41	69.13	57.61	49.38	43.21	38.41	34.56	31.42	28.80	26.59	24.69	23.04	21.60	20.33	19.20					
L	[84]			0.61	0.95	1.36	1.85	2.42	3.06	3.78	4.58	5.45	6.39	7.42	8.51	9.69	10.93	12.26					

See Appendix A for a graphic depicting table loading

NOTE: For serrated grating, the depth of grating required for a specified load is 6mm greater than in the table.

**Weights (mass/area) shown are approximate and vary with manufacturers. They are

LOAD TABLE STAINLESS STEEL GRATING

LOAD TABLE FOR STAINLESS STEEL GRATING - TYPE W-19 OR P-19

ALLOYS 304, 316 & 304L, 316L F=20,000psi, E=28,000,000psi See Appendix A for a graphic depicting table loading

	, [engin	eering	computa	ations u	sing gro	oss sect	ions an			
Bearing Bar Size			D=def	lection,	in.				desig	n select	tion only	and ar	e not in	tended	to be			
(in)									slightly by variations which can be expected due to									
Nominal Weight			lb p	er foot	alightly by variations which can be expected due to material and manufacturing tolerances. Span in Inches Note: The carrying capacity of a piece of grating subjected to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its to a concentrated load over only a portion of its with its a concentrated load over only a portion of its with its a concentrated load over only a portion of its with its a concentrated load over only a portion of its with its a concentrated load over only a portion of its with its a concentrated load over only a portion of its with its a concentrated load over only a portion of its with its a concentrated load over only a portion of its with its a concentrated load over only a portion of its with its and the consulted. 175 18 <th< td=""></th<>													
(psf)**		$\mathbf{+}$	24	30	T	1	40	54	Note	The er	mina	anaaita	of a ni	ana af a	roting	nubiaata	. d	
		Ū	395	253													a	
3/4x1/8	41	Du	0.114	0.179	1													
		С	395	316	263	226	197	175										
[4]		Dc	0.091	0.143	0.206	0.280	0.366	0.463										
		U	592	379	263	193	148									er's		
3/4x3/16	46	Du	0.114	0.179			1		engir	neering	departn	nent sh	ould be	consult	ted.			
		С	592	474	1	1	1	1			1=0	ı	0					
[6]		Dc U	0.091 702	0.143					-			- Form				1 2/46	"	
1x1/8	51	Du	0.086	0.134	1	1												
121/0		C	702	561				1	1		1				ι			
[6]		Dc	0.069	0.107													the	
		U	1053	674	+				168 139 117 Metal Bar Grating Engineering I									
1x3/16	56	Du	0.086	0.134	0.193	0.263	1	1										
		С	1053	842	702	602	526	468	421	383	351							
[8]		Dc	0.069	0.107	0.154	0.210	0.274	0.347	0.429	0.519	0.617	78	84] Note:	: 1/4" is	consid	ered	
		U	1096	702	487	358	274	217	175	145	122	104	90	the m				
1-1/4x1/8	60	Du	0.069	0.107	1	1	1				1		1	1				
		С	1096	877	1									1.		,		
[7]		Dc	0.055	0.086										-				
1-1/4x3/16	67	U Du	1645 0.069	1053 0.107					1					1		-		
1-1/4x3/10	0		1645	1316														
[9]		Dc	0.055	0.086	1			1	1						1	102	108	
		U	1579	1011	+										-	the second second		
1-1/2x1/8	69	Du	0.057	0.089	0.129	0.175	0.229	0.289	1	1	1	1						
		С	1579	1263	1053	902	789	702	632	574	526	486	451	421	395	372	351	
[8]		Dc	0.046	0.071	0.103	0.140	0.183	0.231	0.286	0.346	0.411	0.483	0.560	0.643	0.731	0.826	0.926	
		U	2368	1516		1			1	1		224	193	168	148	131	117	
1-1/2x3/16	77	Du	0.057	0.089											1	1		
		С	2368	1895	1				1								1 1	
[11]		Dc	0.046	0.071						-								
1-3/4x3/16	86	U Du	3224 0.049	2063 0.077						1								
1-5/425/10		C	3224	2579	1	1		1	1	1		1	1					
[13]		Dc	0.039	0.061		1	1		1	1		1	1			1		
		U	4211	2695														
2x3/16	95	Du	0.043	0.067	1	1	1	1	1	1	1	1		1	1	1		
		С	4211	3368	2807	2406	2105	1871	1684	1531	1404	1296	1203	1123	1053	991	936	
[14]	ļ		0.034	0.054			0.137	0.174		1	0.309	0.362	0.420	0.482	0.549	0.619	0.694	
		U	5329	3411		1			1							1	1 1	
2-1/4x3/16	104	Du	0.038	0.060		1			1	1		1			1	1		
(40)		C	5329	4263	3553	3045	2664					1332	1254	1184				
[16]		Dc U	0.030	0.048	0.069	0.093				0.373	0.429	0.488	0.550	0.617				
2-1/2x3/16	112		6579 0.034	4211	2924 0.077	2148 0.105	1645 0.137	1300 0.174	1053 0.214	870 0.259	731 0.309	623 0.362	537 0.420	468 0.482	411 0.549	364 0.619	325 0.694	
	112	C	6579	5263	4386	3759	3289	2924	2632	2392	2193	2024	1880	1754	1645	1548	1462	
[18]			0.027	0.043	0.062	0.084	0.110	0.139	0.171	0.207	0.247	0.290	0.336	0.386	0.439	0.495	0.555	

NOTE: For serrated grating, the depth of grating required for a specified load is 1/4" greater than in the table.

**Weights (mass/area) shown are approximate and vary with manufacturers. They are

LOAD TABLE (METRIC) **STAINLESS STEEL GRATING**

LOAD TABLE FOR STAINLESS STEEL GRATING - TYPE W-19 OR P-19

ALLOYS 304, 316 & 304L, 316L F=138MPa, E=139,000MPa

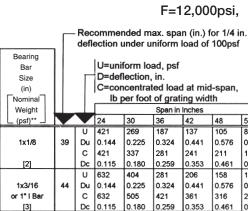
Besting Bar (m) Nominal Weight Wei																							
Bar U-uniform load, KPa design selection only and are not intended to be Size (mm) U-uniform load, KPa isoution interval	Bearing	1				•				engin	eering o	omputa	tions us	sing gro	ss secti	ons and							
"by the production, mn. "by the product of a prior of grain g width Normality is prior by the product of a prior of grain g width Span in Nilmetera Normality is prior by the prior of grain g width Span in Nilmetera Note: The carrying capacity of a piece of grain g width is determined by the stiffness of both the baring bars and the product of the vices bars, and therefore offers with the type of grain g width is determined by the stiffness of both the baring bars and the consultant of the vices bars, and therefore differs with the type of grain g width is determined by the stiffness of both the baring bars and the consultant. 19x6 10 23 38.8 11.1 2.2 19x6 11 2 11 2 11 2 11.2 11.2 Conversion factors: 2.2 2.3 2.3 2.1 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2	-			U=unif	orm loa	d kPa											0 101						
monipal Weight Weight C=concentrated load at mid=span, KN permetre of grating with material and manufacturing tolerances. statistical and manufacturing tolerances. 19x2 1045 U 1890 1210 840 617 173 373 19x2 1045 U 1890 1210 840 617 173 373 19x2 1045 U 1890 1210 840 617 173 373 19x2 1045 U 830 1210 840 617 473 373 19x2 1156 D 233 63 523 711 92 1176 129 manufacturer's erging subject to such loadings, the manufacturer'	1																d						
Number Number Spann Mulmeters material and manufacturing tolerances. 19x3 10x6 D 722 141 007 1219 1372 19x3 10x6 D 220 454 653 8.89 118 1470 201 0 203 454 653 8.89 118 1470 10x5 116 223 8.15 523 7.11 9.29 1785 gratings subject to such loadings, the manufacturer's engineering department should be consulted. 11x5 116 220 4.54 6.53 8.89 116 1477 1224 1676 1829 12x5 116 220 124 1433 1047 1424 1676 1829 Porestings with other than 30mm 25x3 1297 D 218 1446 1559 112 1568 1686 1583 1446 1599 25x5 1435 D 218 143 1376 1686 1583 1472							at mid-s	pan.															
Weym ¹⁺ Topson in Milmeters Kgm ¹⁺ Top 118.00 12.10 4.00 6.17 7.3 3.73 19x3 10.45 Du 2.00 4.44 6.33 8.89 11.81 14.70 2.73 7.	l - ` ´ -									•					•								
Lygmin ¹⁻¹ ▼ 100 722 141 007 1239 1372 Note: The carrying capacity of a pection of its width is 19x3 1045 Du 2.00 454 653 8.89 11.61 1.70 determined by the stiffness of both the bearing bars and therefore differs with the bary of is width is 19x5 1156 U 2.83 5.23 7.11 5.29 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 1.81 1.76 grating subject to such leadings, the manufacture's engineering department should be consulted. 19x5 1156 2.23 2.80 1.80 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.85 1.84 1.84 1.84 1.85 1.84 1.84 1.85 1.84 1.85 1.85 1.84 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85	11 1												3										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			\checkmark	610	762				1372														
19:3 10:4 0u 2:0 4:64 3:44 3:29 2:88 2:56 determined by the stiffness of both the bearing bars and 1201 0:57 3:65 5:23 7:11 9:29 17:76 grating used. To determine the earrying capacity of 19x5 11:56 0:23:3 3:63 5:23 7:11 9:29 17:6 grating used. To determine the earrying capacity of 19x5 11:56 0:23:3 3:63 5:76 4:94 4:32 3:44 15:76 18:29 Conversion Factors: 2:83 1237 14:33 10:97 8:40 6:64 17:4 12:11 15:86 19:27 5:87 4:44 3:73 bearing bars and design stresses, proportionate 2:55 1435 0u 2:64 6:67 6:71 17:10 13:61 11:71 15:86 16:87 Metal Bars and 2:55 1435 0u 2:64 6:78 7:71 10:21 16:11<11:1			Ū							to a concentrated load over only a portion of its width is													
ID De 232 363 523 7.11 9.29 11.76 Grating used. To determine the carrying capacity of carrying subject to such loadings, the manufacturers is engineering department should be consulted. 19x5 1156 Du 2.90 4.54 6.53 8.69 11.61 14.70 1524 1676 1829 [28] De 2.32 3.63 5.23 7.11 9.29 1.176 1829 [28] Du 3.80 21.50 1.433 1.979 8.40 6.64 5.38 4.44 3.73 bearing bar spacing, or for different design strasses, proportionate [25] Du 2.18 8.40 8.80 6.66 5.60 Manual for the development of such design strasses, proportionate [25] Du 2.18 3.40 4.90 6.76 7.71 1.29 1.811 1.568 5.60 Manual for the development of such design strasses, proportionate [25] Du 2.18 3.44 8.76 6.83 6.11 5.512 Manual for the design strasses, proportionate	19x3	1045	Du	2.90	4.54	6.53	8.89	11.61	14.70														
			С	5.76	4.61	3.84	3.29	2.88	2.56	the cr	ross bai	s, and i	herefor	e differ:	s with th	ne type	of						
	[20]		Dc	2.32	3.63	5.23	7.11	9.29	11.76	gratin	g used.	To de	termine	the ca	rrying ca	apacity	of						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			U	28.35	18.14	12.60	9.26	7.09	5.60														
1281 De 2 3 3 5 5 23 7 11 9.29 11 76 1624 1676 1829 Conversion Eactors: 25x3 1297 Du 2.18 3.40 4.90 6.67 6.71 11.00 18.16 18.46 3.73 barning bar spacing, or for different 25x3 1297 Du 2.18 3.40 4.90 6.67 8.71 11.02 13.16 16.46 15.86 13.17 15.68 conversion factors spp: Refer to the 25x5 1435 Du 2.18 3.40 6.90 6.67 6.71 11.00 15.66 5.00 Manual forth de evelopment of such factors spp: Refer to the 361 Du 17.4 2.72 3.92 5.33 6.97 8.82 10.89 13.17 15.68 1281 Date factor spp: Refer to the 373 133 Du 1.74 2.72 3.92 5.33 6.97 8.82 10.89 13.17 15.68 18.40 2.13 Heetion consistent with din	19x5	1156	Du	2.90	4.54	6.53	8.89	11.61	14.70	engin	eering	departn	nent sha	ould be	consult	ed.							
25x3 1297 Du 218 340 4.90 6.64 5.38 4.44 7.27 For gatings with other than 30mm bearing bar spacing, or for different different disging stresses, proportionate conversion factors apply. Refer to the design stresses, proportionate conversion factors apply. Refer to the Metal Bar Crating Engineering Design Manual for the development of such factors apply. Refer to the Metal Bar Crating Engineering Design Metal			C	8.64	6.91	5.76	4.94	4.32	3.84														
	[28]		Dc	2.32	3.63	5.23	7.11	9.29	11.76	1524	1676	1829				nsulted. on Factors: h other than 30mm oring, or for different s, proportionate ors apply. Refer to the ng Engineering Design development of such Note: 6.4mm is consid- ared the maximum de- lection consistent with bedestrian comfort, but							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			υ	33.60	21.50	14.93	10.97	8.40	6.64	5.38	4.44	3.73			with other than 30mm								
[25] Dc 174 272 392 533 697 822 10.89 13.17 15.68 conversion factors apply. Refer to the Metal Bar Grating Engineering Design Matal Bar Gratencontresign Matal Bar Grating	25x3	1297	Du	2.18	3.40	4.90	6.67	8.71	11.02	13.61								t					
25x5 1435 Du 21.8 3.40 4.90 6.67 8.71 11.02 13.61 16.46 19.59 Metal Bar Grating Engineering Design Manual for the development of such factors. [36] Dc 1.74 2.72 3.92 5.33 6.97 8.82 10.89 13.17 15.68 1981 21.34 Note: 6.4 mm is consid-factors. 32x3 1533 Du 1.74 2.72 3.92 5.33 6.97 8.82 10.89 13.17 15.68 18.40 21.34 factors. 32x3 1533 Du 1.74 2.72 3.92 5.33 6.97 8.82 10.89 13.17 15.68 14.254 14.27 1.7 consoft, but factors. [30] Dc 1.74 2.72 3.92 5.33 6.97 8.82 10.89 13.17 15.68 14.254 14.72 1.70 cabe exceeded for othe exceeded for othe exceeded for othe exceeded for the exceeded for tha the detacots the exceeded for tha the deta deta deta deta deta d										4.10	3.72	3.41				ections and es listed are for ed to be be affected cted due to of grating subjected ion of its width is bearing bars and th the type of g capacity of nanufacturer's sulted. T Factors: other than 30mm ing, or for different proportionate rs apply. Refer to the g Engineering Design evelopment of such ote: 6.4mm is consid- ed the maximum de- totion consistent with edestrian comfort, but in be exceeded for her loading conditions the discretion of the togineer. 6 2438 2591 2743 8 4.73 4.19 3.73 11 23.22 26.22 29.39 4 5.76 5.42 5.12 33 18.58 20.97 23.51 8 7.09 6.28 5.60 11 23.22 26.22 29.39 4 5.76 5.42 5.12 33 18.58 20.97 23.51 8 7.09 6.28 5.60 11 23.22 26.22 29.39 4 5.76 5.42 5.12 33 18.58 20.97 23.51 36 7.09 6.28 5.50 7.69 19.91 22.47 25.19 35 11.76 11.07 10.45 36 9.65 8.55 7.62 49 19.91 22.47 25.19 36 11.76 11.07 10.45 37 11.63 12.60 31 15.73 17.63 31 15.73 17.63 31 15.74 13 12.60 31 15.74 17.48 19.59 34 15.95 14.13 12.60 35 13.93 15.73 17.63 36 19.44 18.30 17.28							
25x5 1435 Du 2.8 3.40 4.90 6.67 8.71 11.02 13.61 6.46 15.95 Manual for the development of such factors. 361 Dc 1.7.4 2.72 9.92 5.33 6.97 8.82 10.89 13.17 15.68 19.91 21.34 Applie to the development of such factors. 32x3 1533 Du 1.74 2.72 3.92 5.33 6.97 8.82 10.89 13.17 15.68 18.40 2.13 300 Dc 1.74 2.72 3.92 5.33 6.97 8.82 10.89 13.17 15.68 14.72 17.07 2.80 2.33 11.14 19.69 15.65 12.00 10.41 8.75 7.46 6.43 14.72 17.07 2.286 2.43 2.991 2.743 32x5 16.96 Du 1.74 2.27 3.92 5.33 6.97 8.82 10.89 13.17 15.64 14.72 17.07 D	[25]										13.17	15.68				ections and es listed are for ed to be be affected cted due to of grating subjected ion of its width is bearing bars and th the type of g capacity of nanufacturer's sulted. <u>Teactors:</u> other than 30mm ing, or for different proportionate rs apply. Refer to the g Engineering Design evelopment of such ote: 6.4mm is consid- red the maximum de- betion consistent with edestrian comfort, but an be exceeded for her loading conditions the discretion of the rgineer. <u>6</u> 2438 2591 2743 3 4.73 4.19 3.73 41 23.22 26.22 29.39 4 5.76 5.42 5.12 33 18.58 20.97 23.51 5 7.09 6.28 5.60 41 23.22 26.22 29.39 4 5.76 5.42 5.12 33 18.58 20.97 23.51 5 7.09 6.28 5.60 41 23.22 26.22 29.39 4 5.76 5.42 5.12 33 18.58 20.97 23.51 5 7.09 6.28 5.60 41 23.22 26.22 29.39 4 5.76 11.07 10.45 5 11.76 11.76 11.							
Image: space of the system of the s			U	50.40	32.26		16.46		9.96	8.06	6.66					rtion of its width is bearing bars and with the type of ing capacity of manufacturer's nsulted. <u>on Factors:</u> th other than 30mm acing, or for different s, proportionate ors apply. Refer to the ng Engineering Design development of such Note: 6.4mm is consid- ered the maximum de- flection consistent with bedestrian comfort, but can be exceeded for other loading conditions at the discretion of the engineer. 286 2438 2591 2743 38 4.73 4.19 3.73 0.41 23.22 26.22 29.39 14 5.76 5.42 5.12 3.33 18.58 20.97 23.51 06 7.09 6.28 5.60 0.41 23.22 26.22 29.39 22 8.64 8.13 7.68 5.33 18.58 20.97 23.51							
[36] De 1.74 2.72 3.92 5.33 6.97 8.82 10.89 13.17 15.68 1981 2134 Note: 6.4mm is considered for extimated for the maximum deficiency of the defi	25x5	1435													ne deve	ting Engineering Design							
32x3 1533 U 5250 33.60 23.33 17.14 13.13 10.37 8.40 6.94 5.83 4.97 4.29 ered the maximum deflection consistent with flection consistent with pedestrian comfort, but [30] De 1.39 2.18 3.14 4.27 5.57 7.05 8.71 10.54 12.54 14.72 17.07 can be exceeded for conbe exceeded for 32x5 1696 Du 1.74 2.72 3.92 5.33 6.97 8.52 10.84 1.74 2.72 inter loading conditions at the discretion of the engineer. [44] De 1.39 2.18 3.14 4.27 5.57 7.05 8.71 10.54 12.54 14.72 17.07 2.86 2.438 2.591 2.743 32x5 1696 Du 1.74 2.72 3.27 4.55 5.81 7.35 9.07 10.98 13.06 15.33 17.78 2.041 2.322 2.622 2.9.39 C 2.304			С	15.36		10.24				6.14	5.59												
32x3 1533 Du 1.74 2.72 3.92 5.33 6.97 8.82 10.89 13.17 15.68 18.40 21.34 flection consistent with pedestrian comfort, but can be exceeded row other local becomestation. [30] De 1.39 2.18 3.14 4.27 5.57 7.05 8.71 10.54 12.54 14.72 17.07 can be exceeded row other local becomestation. 32x5 1696 Du 1.74 2.72 3.92 5.33 6.97 6.82 10.89 13.17 15.68 18.40 21.34 ather discretion of the engineer. [44] Dc 1.39 2.18 3.14 4.27 5.57 7.05 8.71 10.54 12.54 14.72 17.07 2286 2438 2591 2.743 38x3 1757 Du 1.45 2.27 3.27 4.45 5.81 7.35 9.07 10.98 13.04 12.33 17.86 6.14 5.33 18.87 7.96 6.80 7.09 6.28 6.00 7.99 6.28 6.00 7.09 6.28 6.	[36]					1									4								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1 -			1									1								
	32x3	1533	1			1									1								
32x5 1696 U 78.75 50.40 35.00 25.71 19.69 15.56 12.60 10.41 8.75 7.46 6.43 other loading conditions 32x5 1696 Du 1.74 2.72 3.92 5.33 6.97 8.62 10.89 13.17 15.66 18.40 21.34 at the discretion of the engineer. [44] Dc 1.39 2.18 3.14 4.27 5.57 7.05 8.71 10.54 12.54 14.72 17.07 22.82 24.83 4.71 4.19 3.73 38x3 1757 Du 1.45 2.27 3.27 4.45 5.81 7.35 9.07 10.98 13.06 15.33 1.778 20.41 23.22 2.62 2.9.39 5.35 1.745 20.41 23.22 2.62 2.9.39 2.5.51 1.024 9.22 8.38 7.08 6.81 1.22 16.33 18.58 2.097 23.51 [36] Du <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 '</td><td></td><td></td><td></td></td<>															1 '								
32x5 1696 Du 1.74 2.72 3.92 5.33 6.97 8.82 10.89 13.17 15.68 18.40 21.34 at the discretion of the engineer. [44] Dc 1.39 2.18 3.14 4.27 5.57 7.05 8.71 10.54 14.72 17.07 2286 2438 2591 2743 38x3 1757 Du 1.45 2.27 3.27 4.45 5.81 7.35 9.07 10.98 13.06 15.33 17.78 20.41 23.22 26.22 29.39 [6] Dc 1.16 1.81 2.61 3.56 4.64 5.88 7.26 8.78 10.45 12.22 16.33 18.58 20.97 23.51 [6] Dc 1.16 1.81 2.61 3.56 6.44 5.88 7.26 8.78 10.45 12.26 14.22 16.33 18.58 2.97 23.51 [6] Du 1.16 1.81	[30]					1									-								
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $	20.5	1000	-		1	1				1													
[44] Dc 1.39 2.18 3.14 4.27 5.57 7.05 8.71 10.54 12.54 14.72 17.07 228 24.83 2591 27.43 383 1757 Du 1.45 2.27 3.20 2.465 5.81 7.35 9.07 10.08 8.40 7.16 6.17 5.38 4.73 4.19 3.73 [36] Dc 1.16 1.8.43 15.36 6.84 5.88 7.26 8.78 10.45 12.26 14.22 16.33 18.58 20.97 23.51 [36] Dc 1.16 1.81 2.61 3.56 4.64 5.88 7.26 8.78 10.45 12.26 14.22 16.33 18.58 20.97 23.51 [52] Du 1.45 2.765 23.04 19.75 17.28 15.38 12.57 16.46 9.88 2.28 8.44 8.35 7.62 [52] Dc 1.16 1.81	32x5	1696	1	1		1			1	1													
U 75.60 48.38 33.60 24.69 18.90 14.93 12.10 10.00 8.40 7.16 6.17 5.38 4.73 4.19 3.73 36x3 1757 Du 1.45 2.27 3.27 4.45 5.81 7.35 9.07 10.98 13.06 15.33 17.78 20.41 23.22 26.22 29.39 [36] Dc 1.16 1.81 2.61 3.56 4.64 5.88 7.26 8.78 10.45 12.22 16.33 18.58 20.97 23.51 38x5 1945 Du 1.45 2.27 3.27 4.45 5.81 7.35 9.07 10.98 13.06 15.33 17.78 20.41 23.22 26.22 29.39 38x5 1945 Du 1.45 2.61 3.65 13.85 13.83 12.57 11.52 10.64 9.88 9.22 8.64 8.3 2.97 2.351 [62] Dc	[[44]															T	2501	2742					
38X3 1757 Du 1.45 2.27 3.27 4.45 5.81 7.35 9.07 10.98 13.06 15.33 17.78 20.41 23.22 26.22 29.99 [36] De 1.16 18.43 15.36 13.17 11.52 10.24 9.22 8.38 7.68 7.09 6.58 6.14 5.76 5.42 5.12 [36] De 1.145 2.261 3.26 4.64 5.88 7.26 8.78 10.45 12.26 14.22 16.33 18.58 20.97 23.51 38x5 1945 Du 1.45 2.27 3.27 4.45 5.81 7.36 9.07 10.98 13.06 15.33 17.78 20.41 23.22 26.22 29.39 38x5 1945 Du 1.45 2.74 4.45 5.81 7.35 9.07 10.98 13.06 15.33 17.78 20.41 23.22 26.22 29.39 38x5 <td>[44]</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td colspan="6"></td>	[44]			1	1	1																	
$ \begin{bmatrix} 36 \end{bmatrix} \\ B \\$	38×3	1757	1		1	1						1											
[36] Dc 1.16 1.81 2.61 3.56 4.64 5.88 7.26 8.78 10.45 12.26 14.22 16.33 18.58 20.97 23.51 38x5 1945 Du 1.45 2.27 3.27 4.45 5.81 7.35 9.07 10.98 13.06 15.33 17.78 20.41 23.22 26.22 29.39 [52] Dc 1.45 2.76 23.04 19.75 17.28 15.88 7.26 8.78 10.45 12.26 14.22 16.33 18.58 20.97 23.51 [52] Dc 1.81 2.61 3.56 4.64 5.88 7.26 8.78 10.45 12.26 14.22 16.33 18.58 20.97 23.51 [52] Dc 1.81 2.61 3.56 4.64 5.88 7.26 8.78 10.45 12.26 14.21 16.33 18.58 20.97 25.15 [60] Du 1.24 <td>0000</td> <td>1101</td> <td></td>	0000	1101																					
38x5 U 113.40 72.58 50.40 37.03 28.35 22.40 18.14 15.00 12.60 10.74 9.26 8.06 7.09 6.28 5.60 38x5 1945 Du 1.45 2.27 3.27 4.45 5.81 7.35 9.07 10.98 13.06 15.33 17.78 20.41 23.22 26.22 29.39 [52] Dc 1.16 1.81 2.61 3.56 4.64 5.88 7.26 8.78 10.45 12.26 14.22 16.33 18.58 20.97 23.51 44x5 2183 Du 1.24 1.94 2.80 38.1 4.98 6.30 7.78 9.41 11.20 13.14 15.24 17.49 19.91 22.47 25.19 44x5 2183 Du 1.26 2.47 13.45 2.835 2.0.91 18.82 17.11 15.68 14.48 13.44 12.55 11.76 11.07 10.45 </td <td>[36]</td> <td></td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td>	[36]		1		1	1		1							1	1							
38x5 1945 Du 1.45 2.27 3.27 4.45 5.81 7.35 9.07 10.98 13.06 15.33 17.78 20.41 23.22 26.22 29.39 [52] Dc 1.16 1.81 2.61 3.56 4.64 5.88 7.26 8.78 10.45 12.26 14.22 16.33 18.58 20.97 23.51 [52] Dc 1.16 1.81 2.61 3.56 4.64 5.88 7.26 8.78 10.45 12.26 14.22 16.33 18.58 20.97 23.51 44x5 2183 Du 1.24 1.94 2.80 3.81 4.98 6.30 7.78 9.41 17.15 14.61 12.60 10.98 6.55 7.62 [60] Dc 1.00 1.56 2.44 3.05 3.98 5.04 6.22 7.53 8.96 10.51 12.19 14.00 15.92 17.98 20.15 [60]			+													1							
$ \begin{bmatrix} c \\ [52] \\ $	38x5	1945	-	1												1	1						
[52] Dc 1.16 1.81 2.61 3.56 4.64 5.88 7.26 8.78 10.45 12.26 14.22 16.33 18.58 20.97 23.51 44x5 2183 Du 1.24 1.94 2.80 3.81 4.98 6.30 7.78 9.41 11.20 13.14 15.24 17.49 19.91 22.47 25.19 601 Dc 1.00 1.56 2.24 3.05 3.98 5.04 6.22 7.53 8.96 10.51 12.19 14.00 15.92 17.98 20.15 601 Dc 1.00 1.56 2.24 3.05 3.98 5.04 6.22 7.53 8.96 10.51 12.19 14.00 15.92 17.98 20.15 610 Dc 1.00 1.90 8.60 65.83 5.040 39.82 32.26 26.66 22.40 19.09 16.46 14.34 12.60 13.34 15.31 17.42 19.66 </td <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td>			1					1							1		1						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	[52]		1				1						1		1		1						
44x5 2183 Du 1.24 1.94 2.80 3.81 4.98 6.30 7.78 9.41 11.20 13.14 15.24 17.49 19.91 22.47 25.19 [60] Dc 1.00 1.56 2.24 3.05 3.98 5.04 6.22 7.53 8.96 10.51 12.19 14.00 15.92 17.98 20.15 [60] Dc 1.00 1.56 2.24 3.05 3.98 5.04 6.22 7.53 8.96 10.51 12.19 14.00 15.92 17.98 20.15 51x5 2413 Du 1.09 1.70 2.45 3.33 4.35 5.51 6.80 8.23 9.80 11.50 13.34 15.31 17.42 19.66 22.04 [68] Du 1.09 1.70 2.45 3.33 4.35 5.41 6.59 7.84 9.20 10.67 12.25 13.93 15.73 17.63 [68]				1		+											+						
[60] Dc 1.00 1.56 2.24 3.05 3.98 5.04 6.22 7.53 8.96 10.51 12.19 14.00 15.92 17.98 20.15 51x5 2413 Du 1.09 1.200 129.02 89.60 65.83 50.40 39.82 32.26 26.66 22.40 19.09 16.46 14.34 12.60 11.16 9.96 51x5 2413 Du 1.09 1.70 2.45 3.33 4.35 5.51 6.80 8.23 9.80 11.50 13.34 15.31 17.42 19.66 22.04 [68] Du 1.96 2.67 3.48 4.41 5.44 6.59 7.84 9.20 10.67 12.25 13.93 15.73 17.63 [68] Du 0.97 1.51 2.18 2.96 3.87 4.90 6.05 7.32 8.71 10.22 11.85 13.61 15.48 17.48 19.59 57x5 <td>44x5</td> <td>2183</td> <td>Du</td> <td>1.24</td> <td>1.94</td> <td>2.80</td> <td>3.81</td> <td>4.98</td> <td>6.30</td> <td>7.78</td> <td>9.41</td> <td>11.20</td> <td>13.14</td> <td>15.24</td> <td>17.49</td> <td>19.91</td> <td>22.47</td> <td>25.19</td>	44x5	2183	Du	1.24	1.94	2.80	3.81	4.98	6.30	7.78	9.41	11.20	13.14	15.24	17.49	19.91	22.47	25.19					
b U 201.60 129.02 89.60 65.83 50.40 39.82 32.26 26.66 22.40 19.09 16.46 14.34 12.60 11.16 9.96 51x5 2413 Du 1.09 1.70 2.45 3.33 4.35 5.51 6.80 8.23 9.80 11.50 13.34 15.31 17.42 19.66 22.04 [68] Dc 6.87 1.36 1.96 2.67 3.48 4.41 5.44 6.59 7.84 9.20 10.67 12.25 13.93 15.73 17.63 [68] U 255.15 163.30 113.40 83.31 63.79 50.40 40.82 33.74 28.35 24.16 20.83 18.14 15.95 14.13 12.60 57x5 2636 Du 0.97 1.51 2.18 2.96 3.87 4.90 6.05 7.32 8.71 10.22 11.85 13.61 15.48 17.48 19.59			C	47.05	37.64		26.88	23.52		18.82		15.68	14.48	13.44	12.55	1	1						
b U 201.60 129.02 89.60 65.83 50.40 39.82 32.26 26.66 22.40 19.09 16.46 14.34 12.60 11.16 9.96 51x5 2413 Du 1.09 1.70 2.45 3.33 4.35 5.51 6.80 8.23 9.80 11.50 13.34 15.31 17.42 19.66 22.04 [68] Dc 6.87 1.36 1.96 2.67 3.48 4.41 5.44 6.59 7.84 9.20 10.67 12.25 13.93 15.73 17.63 [68] U 255.15 163.30 113.40 83.31 63.79 50.40 40.82 33.74 28.35 24.16 20.83 18.14 15.95 14.13 12.60 57x5 2636 Du 0.97 1.51 2.18 2.96 3.87 4.90 6.05 7.32 8.71 10.22 11.85 13.61 15.48 17.48 19.59	[60]		Dc	1.00	1.56	2.24	3.05	3.98	5.04	6.22	7.53	8.96	10.51	12.19	14.00	15.92	17.98	20.15					
Image: Relation of the state of th			U	201.60	129.02		65.83	50.40	39.82	32.26	26.66	22.40	19.09	16.46	14.34	12.60	11.16	9.96					
[68] Dc 0.87 1.36 1.96 2.67 3.48 4.41 5.44 6.59 7.84 9.20 10.67 12.25 13.93 15.73 17.63 57x5 2636 Du 0.97 1.51 2.18 2.96 3.87 4.90 6.05 7.32 8.71 10.22 11.85 13.61 15.48 17.48 57x5 2636 Du 0.97 1.51 2.18 2.96 3.87 4.90 6.05 7.32 8.71 10.22 11.85 13.61 15.48 17.48 19.59 [76] Dc 0.77 1.21 1.74 2.37 3.10 3.92 4.84 5.85 6.97 8.18 9.48 10.89 12.39 13.98 15.68 [76] Dc 0.77 1.21 1.74 2.37 3.10 3.92 4.84 5.85 6.97 8.18 9.48 10.89 12.39 13.98 15.68 [64x5 <td< td=""><td>51x5</td><td>2413</td><td>Du</td><td>1.09</td><td>1.70</td><td>2.45</td><td>3.33</td><td>4.35</td><td>5.51</td><td>6.80</td><td>8.23</td><td>9.80</td><td>11.50</td><td>13.34</td><td>15.31</td><td>17.42</td><td>19.66</td><td>22.04</td></td<>	51x5	2413	Du	1.09	1.70	2.45	3.33	4.35	5.51	6.80	8.23	9.80	11.50	13.34	15.31	17.42	19.66	22.04					
57x5 2636 Du 255.15 163.30 113.40 83.31 63.79 50.40 40.82 33.74 28.35 24.16 20.83 18.14 15.95 14.13 12.60 57x5 2636 Du 0.97 1.51 2.18 2.96 3.87 4.90 6.05 7.32 8.71 10.22 11.85 13.61 15.48 17.48 19.59 [76] Dc 0.77 1.21 1.74 2.37 3.10 3.92 4.84 5.85 6.97 8.18 9.48 10.89 12.39 13.98 15.68 [76] U 315.00 201.60 140.00 102.86 78.75 62.22 50.40 41.65 35.00 29.82 25.71 22.40 19.69 17.44 15.56 64x5 2853 Du 1 1.36 1.96 2.67 3.48 4.41 5.44 6.59 7.84 9.20 10.67 12.25 13.93 15.73			C	61.45	49.16	40.97	35.11	30.72	27.31	24.58	22.34	20.48	18.91	17.56	16.39	15.36	14.46	13.66					
57x5 2636 Du 0.97 1.51 2.18 2.96 3.87 4.90 6.05 7.32 8.71 10.22 11.85 13.61 15.48 17.48 19.59 [76] Dc 0.77 1.21 1.74 2.37 3.10 3.92 4.84 5.85 6.97 8.18 9.48 10.89 12.39 12.39 13.98 15.68 [76] Dc 0.77 1.21 1.74 2.37 3.10 3.92 4.84 5.85 6.97 8.18 9.48 10.89 12.39 13.98 15.68 64x5 2853 Du 1 1.36 140.00 102.86 78.75 62.22 50.40 41.65 35.00 29.82 25.71 22.40 19.69 17.44 15.56 64x5 2853 Du 1 1.36 1.96 2.67 3.48 4.41 5.44 6.59 7.84 9.20 10.67 12.51 13.93 15.63	[68]		Dc	0.87	1.36	1.96	2.67	3.48	4.41	5.44	6.59	7.84	9.20	10.67	12.25	13.93	15.73	17.63					
Image: Column 1 Column 2 77.77 62.22 51.85 44.44 38.89 34.56 31.11 28.28 25.92 23.93 22.22 20.74 19.44 18.30 17.28 [76] Dc 0.77 1.21 1.74 2.37 3.10 3.92 4.84 5.85 6.97 8.18 9.48 10.89 12.39 13.98 15.68 64x5 2853 Du 1 1.36 19.60 102.86 78.75 62.22 50.40 41.65 35.00 29.82 25.71 22.40 19.69 17.44 15.66 64x5 2853 Du 1 1.36 1.96 2.67 3.48 4.41 5.44 6.59 7.84 9.20 10.67 12.25 13.93 15.73 17.63 64x5 Q 0.01 7.6.8 48.01 42.67 38.41 34.91 32.00 29.54 27.43 25.60 24.00 22.59 21.34 [84] <td></td> <td></td> <td>υ</td> <td>255.15</td> <td>163.30</td> <td>113.40</td> <td>83.31</td> <td>63.79</td> <td>50.40</td> <td>40.82</td> <td>33.74</td> <td>28.35</td> <td>24.16</td> <td>20.83</td> <td>18.14</td> <td>15.95</td> <td>14.13</td> <td>12.60</td>			υ	255.15	163.30	113.40	83.31	63.79	50.40	40.82	33.74	28.35	24.16	20.83	18.14	15.95	14.13	12.60					
[76] Dc 0.77 1.21 1.74 2.37 3.10 3.92 4.84 5.85 6.97 8.18 9.48 10.89 12.39 13.98 15.68 64x5 2853 Du 1 1.36 102.86 78.75 62.22 50.40 41.65 35.00 29.82 25.71 22.40 19.69 17.44 15.56 64x5 2853 Du 1 1.36 1.96 2.67 3.48 4.41 5.44 6.59 7.84 9.20 10.67 12.25 13.93 15.73 17.63 64x5 26.01 76.81 64.01 54.86 48.01 42.67 38.41 34.91 32.00 29.54 27.43 25.60 24.00 22.59 21.34 [84] Dc 0.70 1.09 1.57 2.13 2.79 3.53 4.35 5.27 6.27 7.36 8.53 9.80 11.15 12.58 14.11	57x5	2636	Du	0.97	1.51	2.18	2.96	3.87	4.90	6.05	7.32	8.71	10.22	11.85	13.61	15.48	17.48	19.59					
64x5 2853 Du 1 1.36 1.96 2.67 3.48 4.41 5.44 6.59 7.84 9.20 10.67 12.25 13.93 15.73 17.63 [84] Du 1.07 1.09 1.57 2.13 2.79 3.53 4.35 5.27 6.27 7.84 9.20 10.67 12.25 13.93 15.73 17.63 [84] Dc 0.70 1.09 1.57 2.13 2.79 3.53 4.35 5.27 6.27 7.86 8.53 9.80 11.15 12.58 14.11			С	77.77	62.22	51.85	44.44	38.89	34.56	31.11	28.28	25.92	23.93	22.22	20.74	19.44	18.30	17.28					
64x5 2853 Du 1 1.36 1.96 2.67 3.48 4.41 5.44 6.59 7.84 9.20 10.67 12.25 13.93 15.73 17.63 [84] D 96.01 76.81 64.01 54.86 48.01 42.67 38.41 34.91 32.00 29.54 27.43 25.60 24.00 22.59 21.34 [84] Dc 0.70 1.09 1.57 2.13 2.79 3.53 4.35 5.27 6.27 7.36 8.53 9.80 11.15 12.58 14.11	[76]		Dc	1		1.74		3.10	3.92	4.84	5.85	6.97	8.18	9.48	10.89	12.39	13.98	15.68					
C 96.01 76.81 64.01 54.86 48.01 42.67 38.41 34.91 32.00 29.54 27.43 25.60 24.00 22.59 21.34 [84] Dc 0.70 1.09 1.57 2.13 2.79 3.53 4.35 5.27 6.27 7.36 8.53 9.80 11.15 12.58 14.11				315.00	201.60	140.00	1	78.75	62.22	1				1		19.69	17.44						
[84] Dc 0.70 1.09 1.57 2.13 2.79 3.53 4.35 5.27 6.27 7.36 8.53 9.80 11.15 12.58 14.11	64x5	2853	Du	1				1	1									1 1					
				1									1			1	1	1 1					
NOTE: For serviced grating, the denth of grating required for a specified load is 6mm greater than in the table	[84]																12.58	14.11					

NOTE: For serrated grating, the depth of grating required for a specified load is 6mm greater than in the table.

**Weights (mass/area) shown are approximate and vary with manufacturers. They are

provided for preliminary design computations only and are not intended for any other purpose.

See Appendix A for a graphic depicting table loading


LOAD TABLE

ALUMINUM GRATING

LOAD TABLE FOR ALUMINUM GRATING - TYPE P-19

E=10,000,000psi F=12,000psi,

See Appendix A for a graphic depicting table loading

					• - •	_,	000,	_	,.	,	opo.			ucp	loung	Jiabh		ing
					ax. spa			n.						re base				
	deflection under uniform load of 100psf											ross se						
Bearing			L											ne value			r	
Bar		-		form lo lection,										intende				
Size	(in) C=concentrated load at mid-span,						"absolute" since actual load capacity will be affected slightly by variations which can be expected due to											
					of grati							acturin				10		
Weight					Span in													
_ (psf)** _			24	30	36	42	48	54	Note.	The ca	arrying	capacit	y of a p	piece of	grating	l subjec	ted	
		υ	421	269	187	137	105	83						a portio				
1x1/8	39	Du	0.144	0.225	0.324	0.441	0.576	0.729						h the be			d	
101		С	421	337	281	241	211	187						ers with				
[2]		Dc U	0.115 632	0.180	0.259	0.353	0.461 158	0.583						arrying the ma				
1x3/16	44	Du	0.144	0.225	0.324	0.441	0.576	125 0.729						e consu		liel S		
or 1" I Bar		c	632	505	421	361	316	281	cingin	coning	uopuru			001100	neu.			
[3]		Dc	0.115	0.180	0.259	0.353	0.461	0.583	60	66	72]	Conve	rsion F	actors:			
		υ	842	539	374	275	211	166	135	111	94			with of				
1x1/4	47	Du	0.144	0.225	0.324	0.441	0.576	0.729	0.900	1.089	1.296			spacing			nt	
		С	842	674	561	481	421	374	337	306	281			ses, pr				
[4]		Dc U	0.115 658	0.180 421	0.259 292	0.353 215	0.461	0.583	0.720	0.871 87	1.037 73			actors a rating E				
1-1/4x1/8	47	Du	0.115	421 0.180	0.259	0.353	0.461	0.583	0.720	87 0.871	1.037			he deve				
1-1/421/0	"	c	658	526	439	376	329	292	263	239	219	facto			lopine	1 01 30	cn	
[3]		Dc	0.092	0.144	0.207	0.282	0.369	0.467	0.576	0.697	0.829	78	84	Note:	1/4" is	consid	lered	
		υ	987	632	439	322	247	195	158	130	110	93	81	the m	naximui	n defle	ction	
1-1/4x3/16	52	Du	0.115	0.180	0.259	0.353	0.461	0.583	0.720	0.871	1.037	1.217	1.411	consi	istent w	vith		
or 1-1/4" Bar		С	987	789	658	564	493	439	395	359	329	304	282			omfort,		
[4]		Dc	0.092	0.144	0.207	0.282	0.369	0.467	0.576	0.697	0.829	0.973	1.129			eded fo		
1-1/4x1/4	55	U Du	1316 0.115	842 0.180	585 0.259	430 0.353	329 0.461	260 0.583	211 0.720	174 0.871	146 1.037	125	107			g condi tion of i		
1-1/421/4	55	c	1316	1053	877	752	658	585	526	478	439	1.217 405	1.411 376	engin			шe	
[5]		Dc	0.092	0.144	0.207	0.282	0.369	0.467	0.576	0.697	0.829	0.973	1.129	90	96	102	108	
		U	947	606	421	309	237	187	152	125	105	90	77	67	59	52	47	
1-1/2x1/8	53	Du	0.096	0.150	0.216	0.294	0.384	0.486	0.600	0.726	0.864	1.014	1.176	1.350	1.536	1.734	1.944	
		С	947	758	632	541	474	421	379	344	316	291	271	253	237	223	211	
[3]		Dc	0.077	0.120	0.173	0.235	0.307	0.389	0.480	0.581	0.691	0.811	0.941	1.080	1.229	1.387	1.555	
1.10.000	50	U	1421	909	632	464	355	281	227	188	158	135	116	101	89	79	70	
1-1/2x3/16 or 1-1/2" Bar	59	Du C	0.096 1421	0.150	0.216 947	0.294 812	0.384 711	0.486 632	0.600 568	0.726 517	0.864 474	1.014 437	1.176 406	1.350 379	1.536 355	1.734 334	1.944 316	
[4]		Dc	0.077	0.120	0.173	0.235	0.307	0.389	0.480	0.581	0.691	0.811	0.941	1.080	1.229	1.387	1.555	
1		U	1895	1213	842	619	474	374	303	251	211	179	155	135	118	105	94	
1-1/2x1/4	64	Du	0.096	0.150	0.216	0.294	0.384	0.486	0.600	0.726	0.864	1.014	1.176	1.350	1.536	1.734	1.944	
		С	1895	1516	1263	1083	947	842	758	689	632	583	541	505	474	446	421	
[5]		Dc	0.077	0.120	0.173	0.235	0.307	0.389	0.480	0.581	0.691	0.811	0.941	1.080	1.229	1.387	1.555	
1-3/4x3/16	66	U Du	1934 0.082	1238 0.129	860 0.185	632 0.252	484 0.329	382 0.417	309 0.514	256 0.622	215 0.741	183 0.869	158 1.008	138	121	107	96	
or 1-3/4" Bar	00	C	1934	1547	1289	1105	967	860	774	703	645	595	553	1.157 516	1.317 484	1.486 455	1.666 430	I
[5]		Dc	0.066	0.103	0.148	0.202	0.263	0.333	0.411	0.498	0.592	0.695	0.806	0.926	1.053	1.189	1.333	I
		U	2579	1651	1146	842	645	509	413	341	287	244	211	183	161	143	127	
1-3/4x1/4	71	Du	0.082	0.129	0.185	0.252	0.329	0.417	0.514	0.622	0.741	0.869	1.008	1.157	1.317	1.486	1.666	
		С	2579	2063	1719	1474	1289	1146	1032	938	860	794	737	688	645	607	573	
[6]		Dc	0.066	0.103	0.148	0.202	0.263	0.333	0.411	0.498	0.592	0.695	0.806	0.926	1.053	1.189	1.333	
0.040		U	2526	1617	1123	825	632	499	404	334	281	239	206	180	158	140	125	
2x3/16 or 2" Bar	73	Du C	0.072	0.113	0.162 1684	0.221	0.288 1263	0.365	0.450	0.545 919	0.648 842	0.761	0.882	1.013 674	1.152 632	1.301 594	1.458	
[5]		Dc	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.436	0.518	0.608	0.706	0.810	0.922	1.040	561 1.166	
		U	3368	2156	1497	1100	842	665	539	445	374	319	275	240	211	186	166	
2x1/4	79	Du	0.072	0.113	0.162	0.221	0.288	0.365	0.450	0.545	0.648	0.761	0.882	1.013	1.152	1.301	1.458	
		С	3368	2695	2246	1925	1684	1497	1347	1225	1123	1036	962	898	842	793	749	
[7]		Dc	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.436	0.518	0.608	0.706	0.810	0.922	1.040	1.166	
		U	3197	2046	1421	1044	799	632	512	423	355	303	261	227	200	177	158	
2-1/4x3/16 or 2-1/4" Bar	80	Du C	0.064 3197	0.100	0.144	0.196	0.256	0.324	0.400	0.484	0.576 1066	0.676 984	0.784 914	0.900 853	1.024 799	1.156 752	1.296 711	
[6]		Dc	0.051	0.080	0.115	0.157	0.205	0.259	0.320	0.387	0.461	0.541	0.627	0.720	0.819	0.925	1.037	
191		U	4263	2728	1895	1392	1066	842	682	564	474	404	348	303	266	236	211	
2-1/4x1/4	86	Du	0.064	0.100	0.144	0.196	0.256	0.324	0.400	0.484	0.576	0.676	0.784	0.900	1.024	1.156	1.296	
		с	4263	3411	2842	2436	2132	1895	1705	1550	1421	1312	1218	1137	1066	1003	947	
[8]		Dc	0.051	0.080	0.115	0.157	0.205	0.259	0.320	0.387	0.461	0.541	0.627	0.720	0.819	0.925	1.037	
		U	3947	2526	1754	1289	987	780	632	522	439	374	322	281	247	219	195	
2-1/2x3/16	87	Du	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.436	0.518	0.608	0.706	0.810	0.922	1.040	1.166	
or 2-1/2" Bar		C Dc	3947 0.046	3158 0.072	2632 0.104	2256 0.141	1974 0.184	1754 0.233	1579 0.288	1435 0.348	1316 0.415	1215 0.487	1128 0.564	1053 0.648	987 0.737	929 0.832	877 0.933	
[7]		U	5263	3368	2339	1719	1316	1040	842	0.348 696	585	498	430	374	329	0.832 291	260	
2-1/2x1/4	93	Du	0.058	0.090	0.130	0.176	0.230	0.292	0.360	0.436	0.518	0.608	0.706	0.810	0.922	1.040	1.166	
		C	5263	4211	3509	3008	2632	2339	2105	1914	1754	1619	1504	1404	1316	1238	1170	
[9]		Dc	0.046	0.072	0.104	0.141	0.184	0.233	0.288	0.348	0.415	0.487	0.564	0.648	0.737	0.832	0.933	
	NOT			arating	the der	th of an	41	1		Fied load	in 1/4" -		1	4.11.				

NOTE: For serrated grating, the depth of grating required for a specified load is 1/4" greater than in the table.

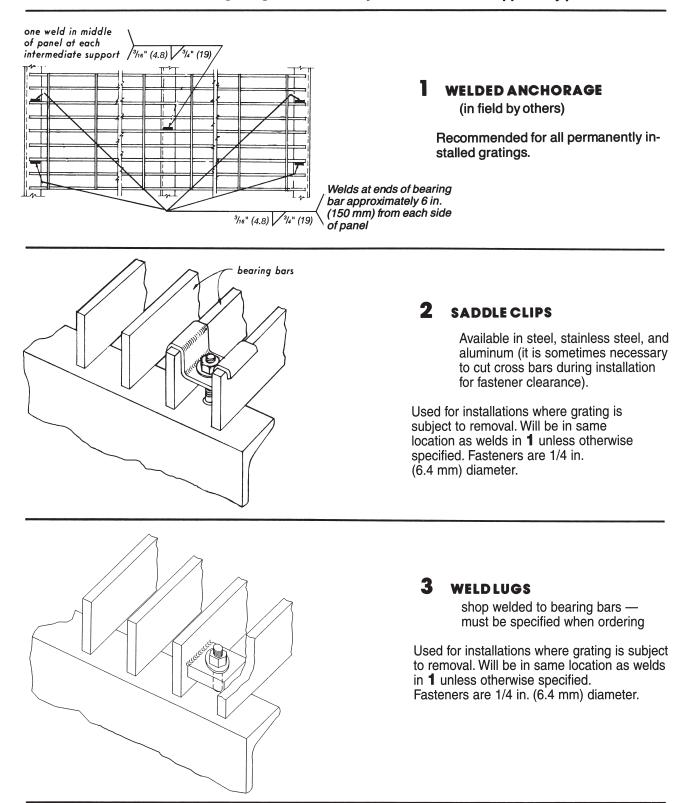
**Weights (mass/area) shown are approximate and vary with manufacturers. They are

LOAD TABLE FOR ALUMINUM GRATING - TYPE P-19

ANSI/NAAMM MBG 531-17 LOAD TABLE (METRIC) ALUMINUM GRATING

F=83MPa, E=69,000MPa

See Appendix A for a graphic depicting table loading

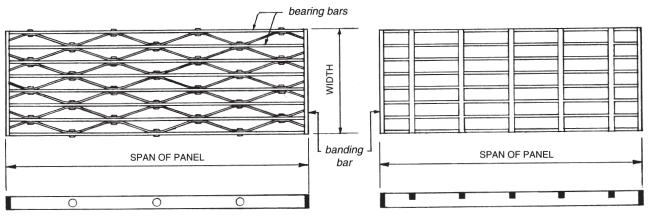

Bearing	Recommended max. span (mm) for 6.4mm deflection under uniform load of 4.8kPa					engin nomi	eering nal size	comput is of be	tations aring b	using g ars. Th	ross se ie value	ections	d are fo	r			
Bar			•						design selection only and are not intended to be								
Size				ection,		ام است			"absolute" since actual load capacity will be affected slightly by variations which can be expected due to								
(mm)				centrat							manuf					0 10	
Nominal Weight				perme		Millimeter					manui	acturing	y loiera	11665.			
Kg/m ² **		$\mathbf{\nabla}$	610	762	914	1067	1219	1372	Note	The ca	mvina	canacil	vofar	iece of	arating	a subjec	ted
		Ŭ	20.16	12.90	8.96	6.58	5.04	3.98								width is	
25x3	1002	Du	3.66	5.72	8.23	11.20	14.63	18.52								bars an	
		С	6.14	4.92	4.10	3.51	3.07	2.73			rs, and						-
[10]		Dc	2.93	4.57	6.58	8.96	11.70	14.81	gratir	ig used	To de	etermin	e the ca	arrying	capaci	ty of	
		υ	30.24	19.35	13.44	9.87	7.56	5.97			ject to s						
25x5 or	1109	Du	3.66	5.72	8.23	11.20	14.63	18.52	engir	eering	departr	ment sh	ould be	e consi	ilted.		
25mm i Bar		С	9.22	7.37	6.14	5.27	4.61	4.10		-	•						
[13]		Dc	2.93	4.57	6.58	8.96	11.70	14.81	1524	1676	1829]	Conve	rsion F	actors:		
		U	40.32	25.80	17.92	13.17	10.08	7.96	6.45	5.33	4.48	Forg	ratings	with of	ther tha	n 30m	n
25x6	1192	Du	3.66	5.72	8.23	11.20	14.63	18.52	22.86	27.66	32.92	beari	ng bar	spacinę	g, or foi	r differe	nt
	ľ	С	12.29	9.83	8.19	7.02	6.14	5.46	4.92	4.47	4.10	desig	n stres	ses, pr	oportio	nate	
[17]		Dc	2.93	4.57	6.58	8.96	11.70	14.81	18.29	22.13	26.33	conv	ersion i	actors	apply.	Refer t	o the
		U	31.50	20.16	14.00	10.29	7.88	6.22	5.04	4.17	3.50	Meta	l Bar G	rating E	Enginee	ering De	əsign
32x3	1185	Du	2.93	4.57	6.58	8.96	11.70	14.81	18.29	22.13	26.33	Manu	ial for t	he devi	elopme	nt of su	ch
		с	9.60	7.68	6.40	5.49	4.80	4.27	3.84	3.49	3.20	facto					
[12]	l	Dc	2.34	3.66	5.27	7.17	9.36	11.85	14.63	17.70	21.07	1981	2134			m is col	
		U	47.25	30.24	21.00	15.43	11.81	9.33	7.56	6.25	5.25	4.47	3.86			ximum	
32x5 or	1311	Du	2.93	4.57	6.58	8.96	11.70	14.81	18.29	22.13	26.33	30.91	35.84	1		sistent	
32mm I Bar		С	14.40	11.52	9.60	8.23	7.20	6.40	5.76	5.24	4.80	4.43	4.11			comfort	
[16]		Dc	2.34	3.66	5.27	7.17	9.36	11.85	14.63	17.70	21.07	24.73	28.68			eded fo	
		υ	63.00	40.32	28.00	20.57	15.75	12.44	10.08	8.33	7.00	5.96	5.14			g condi	
32x6	1409	Du	2.93	4.57	6.58	8.96	11.70	14.81	18.29	22.13	26.33	30.91	35.84			etion of	the
		С	19.20	15.36	12.80	10.97	9.60	8.53	7.68	6.98	6.40	5.91	5.49	engii	1		
[20]		Dc	2.34	3.66	5.27	7.17	9.36	11.85	14.63	17.70	21.07	24.73	28.68	2286	2438	2591	2743
		υ	45.36	29.03	20.16	14.81	11.34	8.96	7.26	6.00	5.04	4.29	3.70	3.23	2.84	2.51	2.24
38x3	1359	Du	2.44	3.81	5.49	7.47	9.75	12.34	15.24	18.44	21.95	25.76	29.87	34.29	39.01	44.04	49.38
		С	13.83	11.06	9.22	7.90	6.91	6.14	5.53	5.03	4.61	4.25	3.95	3.69	3.46	3.25	3.07
[14]		Dc	1.95	3.05	4.39	5.97	7.80	9.88	12.19	14.75	17.56	20.60	23.90	27.43	31.21	35.23	39.50
		U	68.04	43.55	30.24	22.22	17.01	13.44	10.89	9.00	7.56	6.44	5.55	4.84	4.25	3.77	3.36
38x5 or	1504	Du	2.44	3.81	5.49	7.47	9.75	12.34	15.24	18.44	21.95	25.76	29.87	34.29	39.01	44.04	49.38
38mm I Bar		С	20.74	16.59	13.83	11.85	10.37	9.22	8.30	7.54	6.91	6.38	5.93	5.53	5.18	4.88	4.61
[19]		Dc	1.95	3.05	4.39	5.97	7.80	9.88	12.19	14.75	17.56	20.60	23.90	27.43	31.21	35.23	39.50
		υ	90.72	58.06	40.32	29.62	22.68	17.92	14.52	12.00	10.08	8.59	7.41	6.45	5.67	5.02	4.48
38x6	1616	Du	2.44	3.81	5.49	7.47	9.75	12.34	15.24	18.44	21.95	25.76	29.87	34.29	39.01	44.04	49.38
		С	27.65	22.12	18.43	15.80	13.83	12.29	11.06	10.06	9.22	8.51	7.90	7.37	6.91	6.51	6.14
[24]	L	Dc	1.95	3.05	4.39	5.97	7.80	9.88	12.19	14.75	17.56	20.60	23.90	27.43	31.21	35.23	39.50
		U	92.61	59.27	41.16	30.24	23.15	18.29	14.82	12.25	10.29	8.77	7.56	6.59	5.79	5.13	4.57
44x5 or	1688	Du	2.09	3.27	4.70	6.40	8.36	10.58	13.06	15.81	18.81	22.08	25.60	29.39	33.44	37.75	42.32
44mm I Bar		С	28.23	22.58	18.82	16.13	14.11	12.55	11.29	10.26	9.41	8.69	8.07	7.53	7.06	6.64	6.27
[22]	ļ	Dc	1.67	2.61	3.76	5.12	6.69	8.46	10.45	12.64	15.05	17.66	20.48	23.51	26.75	30.20	33.86
		U	123.48	79.03	54.88	40.32	30.87	24.39	19.76	16.33	13.72	11.69	10.08	8.78	7.72	6.84	6.10
44x6	1814	Du	2.09	3.27	4.70	6.40	8.36	10.58	13.06	15.81	18.81	22.08	25.60	29.39	33.44	37.75	42.32
		С	37.64	30.11	25.09	21.51	18.82	16.73	15.05	13.69	12.55	11.58	10.75	10.04	9.41	8.86	8.36
[28]		Dc	1.67	2.61	3.76	5.12	6.69	8.46	10.45	12.64	15.05	17.66	20.48	23.51	26.75	30.20	33.86
		U	120.96	77.41	53.76	39.50	30.24	23.89	19.35	15.99	13.44	11.45	9.87	8.60	7.56	6.70	5.97
51x5 or	1866	Du	1.83	2.86	4.11	5.60	7.32	9.26	11.43	13.83	16.46	19.32	22.40	25.72	29.26	33.03	37.03
51mm I Bar		С	36.87	29.50	24.58	21.07	18.43	16.39	14.75	13.41	12.29	11.34	10.53	9.83	9.22	8.68	8.19
[25]	l	Dc	1	2.29	3.29	4.48	5.85	7.41	9.14	11.06	13.17	15.45	17.92	20.57	23.41	26.43	29.63
		U	161.28	103.22	71.68	52.66	40.32	31.86	25.80	21.33	17.92	15.27	13.17	11.47	10.08	8.93	7.96
51x6	2005	Du	1.83	2.86	4.11	5.60	7.32	9.26	11.43	13.83	16.46	19.32	22.40	25.72	29.26	33.03	37.03
		С	49.16	39.33	32.77	28.09	24.58	21.85	19.66	17.88	16.39	15.13	14.05	13.11	12.29	11.57	10.92
[32]		Dc	1.46	2.29	3.29	4.48	5.85	7.41	9.14	11.06	13.17	15.45	17.92	20.57	23.41	26.43	29.63
		U	153.09	97.98	68.04	49.99	38.27	30.24	24.49	20.24	17.01	14.49	12.50	10.89	9.57	8.48	7.56
57x5 or	2038	Du	1.63	2.54	3.66	4.98	6.50	8.23	10.16	12.29	14.63	17.17	19.91	22.86	26.01	29.36	32.92
57mm I Bar		С	46.66	37.33	31.11	26.66	23.33	20.74	18.66	16.97	15.55	14.36	13.33	12.44	11.67	10.98	10.37
[28]	ļ	Dc	1.30	2.03	2.93	3.98	5.20	6.58	8.13	9.83	11.70	13.74	15.93	18.29	20.81	23.49	26.33
		U	204.12	130.64	90.72	66.65	51.03	40.32	32.66	26.99	22.68	19.33	16.66	14.52	12.76	11.30	10.08
57x6	2190	Du	1.63	2.54	3.66	4.98	6.50	8.23	10.16	12.29	14.63	17.17	19.91	22.86	26.01	29.36	32.92
		С	62.22	49.77	41.48	35.55	31.11	27.65	24.89	22.62	20.74	19.14	17.78	16.59	15.55	14.64	13.83
[36]			1.30	2.03	2.93	3.98	5.20	6.58	8.13	9.83	11.70	13.74	15.93	18.29	20.81	23.49	26.33
		υ	189.00	120.96	84.00	61.71	47.25	37.33	30.24	24.99	21.00	17.89	15.43	13.44	11.81	10.46	9.33
64x5 or	2205	Du	1.46	2.29	3.29	4.48	5.85	7.41	9.14	11.06	13.17	15.45	17.92	20.57	23.41	26.43	29.63
64mm I Bar		С	57.61	46.09	38.41	32.92	28.80	25.60	23.04	20.95	19.20	17.73	16.46	15.36	14.40	13.55	12.80
[31]	L	Dc	1.17	1.83	2.63	3.58	4.68	5.93	7.32	8.85	10.53	12.36	14.34	16.46	18.73	21.14	23.70
		U	252.00	161.28	112.00	82.29	63.00	49.78	40.32	33.32	28.00	23.86	20.57	17.92	15.75	13.95	12.44
64x6	2370	Du	1.46	2.29	3.29	4.48	5.85	7.41	9.14	11.06	13.17	15.45	17.92	20.57	23.41	26.43	29.63
		С	76.81	61.45	51.21	43.89	38.41	34.14	30.72	27.93	25.60	23.63	21.95	20.48	19.20	18.07	17.07
[40]	1	Do	1.17	1.83	2.63	3.58	4.68	5.93	7.32	8.85	10.53	12.36	14.34	16.46	18.73	21.14	23.70

NOTE: For serrated grating, the depth of grating required for a specified load is 6mm greater than in the table.

**Weights (mass/area) shown are approximate and vary with manufacturers. They are

ANCHORING DETAILS

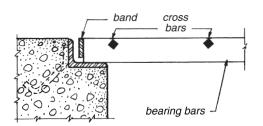
All gratings are to be firmly anchored to their supports by positive means.


4 OTHER TYPES

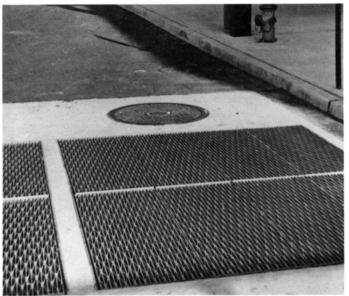
Other types of anchors which have been appropriately tested and have demonstrated satisfactory performance may be used also. Included in other types are top-mounting mechanical friction anchors which can be installed without requiring access to the underside of the grating and which eliminate field welding and/or drilling. These anchors are removable and may be used where gratings are subject to frequent removal.

INSTALLATION NOTES PANEL DIMENSIONS

GENERAL REQUIREMENTS FOR GRATING INSTALLATION


- 1. Unpack grating and inspect for damage.
- 2. Grating shall be installed with cross bars on top.
- 3. Preliminarily install all grating into area per layout drawing.
- 4. Adjust spacing between panels to allow for proper pack out and equal spacing between panels and between supports.
- 5. Verify that all grating is adequately supported. Notching bearing bars at supports or interrupting bearing bars with cutouts shall only occur when the system has been designed for such modification and is specified by the design engineer and indicated on the plans.
- 6. Securely fasten all grating as specified for project or per NAAMM recommendations.

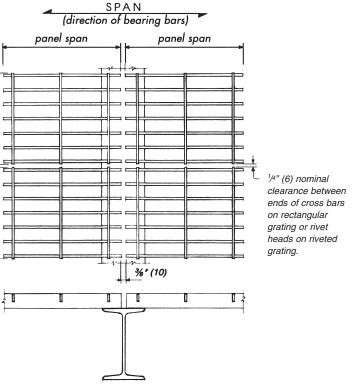
- SPAN of panel is measured parallel to the bearing bars.
- WIDTH of panel is measured perpendicular to the bearing bars, even if this dimension exceeds the panel span.


SUPPORT and BANDING of TRENCH GRATING

Each end of a metal bar grating panel installed in a trench shall be supported on an angle or other shape whose inside vertical dimension equals that of the bearing bar.

Specify banding on all gratings subject to rolling loads. Full depth band is supplied by manufacturer for all banded grating unless owner or specifier states clearly that shallow banding shall be provided.

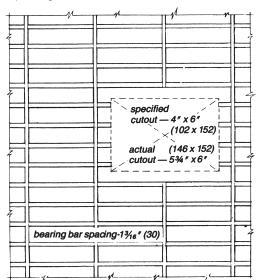
Shallow banding bar shall be 1/4 in. (6.4 mm) to 1/2 in. (13 mm) less than depth of grating to permit drainage.

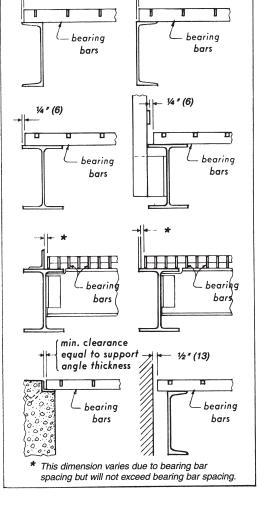

panel width

panel width

Metal shall be used for all grating supports and provide a 1 in. (25 mm) minimum bearing surface for depths up to $2^{1/4}$ in. (57 mm), and 2 in. (51 mm) minimum bearing surface for depth $2^{1/2}$ in. (64 mm) and over, at each end of span.

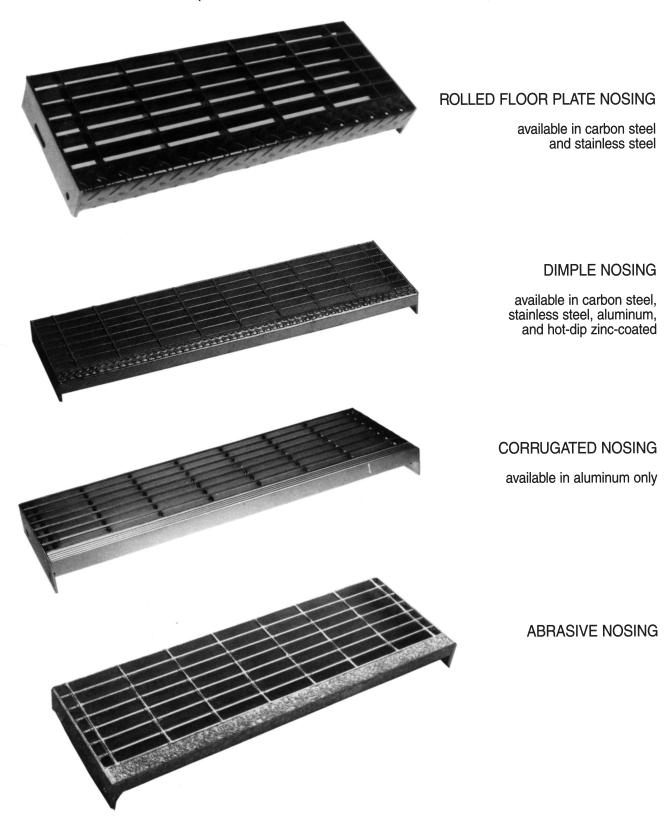
1⁄4 ″ (6)


1/4 " (6)

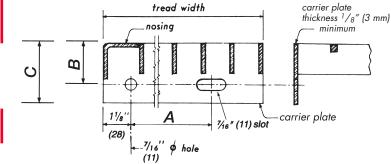

Clearances shown are recommended, but vary in accordance with dimensional tolerances shown on page 20.

Cutouts for circular obstructions are recommended to be at least 2 in. (51 mm) larger in diameter than the obstruction. It is further recommended that cutouts for all piping 4 in. (102 mm) or less in diameter be made in the field.

As shown in the drawing below, all rectangular cutouts are made to the next bearing bar beyond the penetration with a clearance not to exceed bearing bar spacing.


OPERATION AND MAINTENANCE INSTRUCTIONS

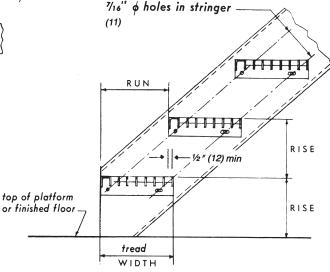
- 1. For pedestrian load rated grating design, grating is intended for normal walking pedestrian traffic. Precautions shall be taken to prevent wheel or other loads beyond the design load rating for the application.
- 2. For other uniform or concentrated load rating applications, precautions shall be taken to prevent loads beyond the design load rating for the application.
- 3. Periodically inspect grating for damage or excessive wear, such as corrosion, damage to the finish, deformation and excessive bearing bar lean beyond the tolerances as noted on page 20. Repair or replace any areas showing damage.
- 4. Periodically inspect grating to be sure that all grating is securely fastened as specified for the application or as noted on page 14, if fastening method is not specified. Replace any missing attachment hardware and tighten any loose connections.


STANDARD TREAD NOSINGS

GENERAL NOTES: Nosings shall be used on treads and on grating at the head of stairs, both for visual safety and to sustain edge loads.

Nosing widths shall be between $1\frac{1}{4}$ in. (32 mm) and $1\frac{1}{2}$ in. (36 mm). (Manufacturers' standards are within these limits.)

TREAD DIMENSIONS RECOMMENDED DETAILS


TREAD with carrier plate detail

TREAD with carrier angles available, consult grating manufacturer for details

DIMENSION ${\bf A}$ in TREAD with carrier plate detail in. (mm)

Nominal T (approxi Bearing B	Dimension A	
1 ³ ⁄ ₁₆ (30)	¹⁵ ⁄ ₁₆ (24)	
6 ¹ / ₄ (159) 7 ¹ / ₄ (184) 8 ¹ / ₂ (216) 9 ³ / ₄ (248) 11 (279) 12 (305)	6 (152) 7 (178) 9 (229) 10 (254) 10 ³ / ₄ (273) 11 ³ / ₄ (298)	21/2 (63) 41/2 (114) 41/2 (114) 7 (178) 7 (178) 7 (178) 7 (178)

* * Consult manufacturer for exact dimension.

NOTE: Tread width should always be greater than tread run by 1/2 in. (12mm) minimum.

DIMENSION B & C in TREAD with carrier plate detail in. (mm)

Grating	Dimension	Dimension		
Depth	B	C		
^{3/} 4 (19) to 1 ¹ / ₄ (32)	1³/ ₄ (44)	2 ¹ / ₂ (63)		
1 ¹ / ₂ (38) to 1 ³ / ₄ (44)	2¹/ ₄ (57)	3 (76)		
For aluminum and all treads over $1^{3}/_{4}$ (44) consult with manufacturer.				

RECOMMENDED BEARING BAR SIZES

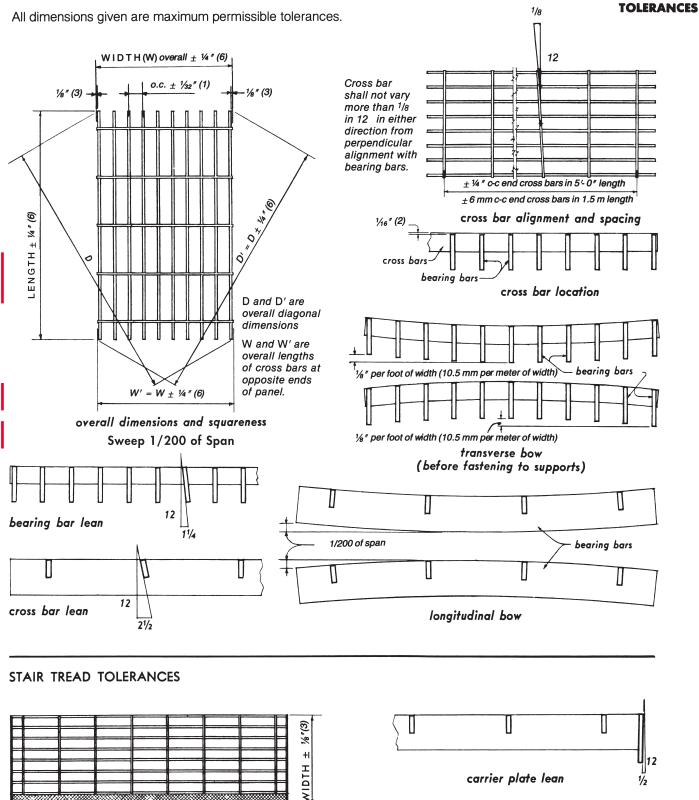
STEEL TREADS

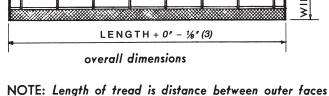
Bearing Bar Size	Maximum Tread Length*							
in. (mm)	@ 1¾ ₁₆ (30) o.c.	@ ¹⁵ ⁄ ₁₆ (24) o.c.					
	Plain	Serrated	Plain	Serrated				
³ / ₄ x ³ / ₁₆ (19 x 5) 1 x ³ / ₁₆ (25 x 5) 1 ¹ / ₄ x ³ / ₁₆ (32 x 5) 1 ¹ / ₂ x ³ / ₁₆ (38 x 5)	4'-8" (1.42m)	4'-2" (1.27m)	2'-8" (.81m) 4'-0" (1.22m) 5'-1" (1.55m) 5'-6" (1.67m)	4′-6″ (1.37m)				

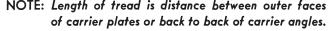
Note: When tread length exceeds 5'-6" (1.67m), design tread for 300 lb (1.33kN) concentrated loads at one-third points.

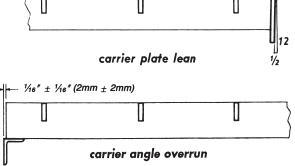
ALUMINUM TREADS

Rectangular Bars

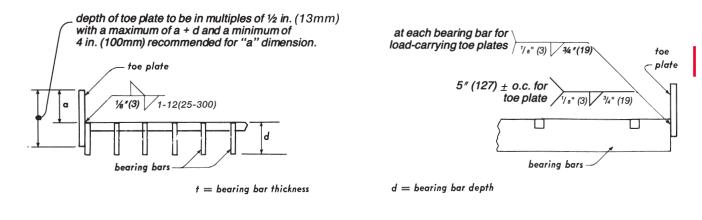

Bearing Bar Size	Maximum Tread Length*						
in. (mm)	@ 1¾ ₁₆ ((30) o.c.	@ ¹⁵ ⁄ ₁₆ (24) o.c.				
	Plain	Serrated	Plain	Serrated			
$\begin{array}{c} 1 \times \frac{3}{16} \left(25 \times 5 \right) \\ 1\frac{1}{4} \times \frac{3}{16} \left(32 \times 5 \right) \\ 1\frac{1}{2} \times \frac{3}{16} \left(38 \times 5 \right) \\ 1\frac{3}{4} \times \frac{3}{16} \left(44 \times 5 \right) \end{array}$	2'-4" (.71m) 2'-10" (.86m) 3'-6" (1.07m) 4'-3" (1.30m)	3'-2" (.97m)	2'-6" (.76m) 3'-1" (.94m) 3'-10" (1.17m) 4'-8" (1.42m)	3'-6" (1.07m)			


*Maximum tread length based on 300 lb (133 kN) concentrated load on front 5 in. (127 mm) of tread at center of tread length and deflection limitation of 1/240 of length . For maximum length under other loadings, consult the manufacturer.

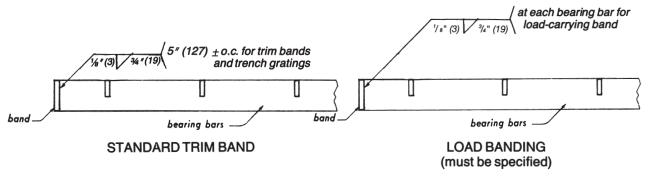

I Bars


Bearing Bar Size	Maximum Tread Length*				
in. (mm)	@ 1¾ ₁₆ (30) o.c.	@ ¹⁵ / ₁₆ (24) o.c.			
1 (25) I 1¼ (32) I 1½ (38) I 1¾ (44) I	2'-4" (.71m) 2'-10" (.86m) 3'-6" (1.07m) 4'-3" (1.30m)	2'-6" (.76m) 3'-1" (.94m) 3'-10" (1.17m) 4'-8" (1.42m)			

MANUFACTURING

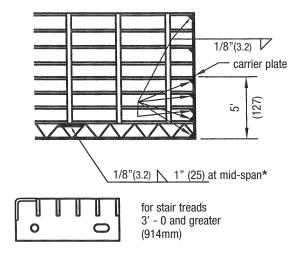


WELDING

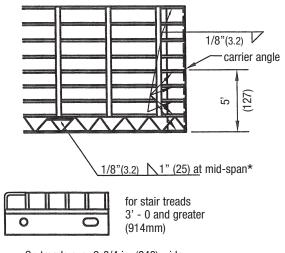

STANDARDS

The welding standards shown here apply to those gratings and treads having a clear opening of not less than ½ in. (16 mm) between bearing bars and those galvanized as per Specifications, page 24. See NAAMM STANDARD MBG 533 "Welding Specifications for Fabrication of Steel, Aluminum and Stainless Steel Bar Grating" for welding specifications and certification of welders.

TOE PLATES



BANDING


STANDARD STAIR TREADS

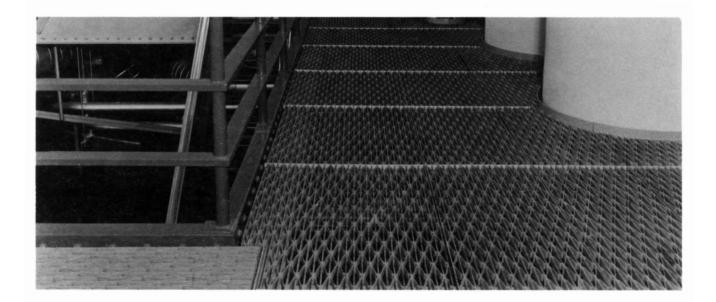
(bearing bar thickness less than 1/4"(6.4mm) and bearing bar clear opening greater than or equal to 5/8" (16mm))

when carrier plates and carrier angles are used, the bearing bars in the front five inches,

the back bearing bar, and the nosing shall be welded to the carrier plate or carrier angle as shown.

On treads over 9-3/4 in. (248) wide weld end of center bar also. * Treads spanning 4 ft. (1.2m) or more shall have

welds located at the third points.


ANSI/NAAMM MBG 531-17 GRATING USES

USES FOR GRATINGS

Airplane Landing Mats Airplane Unloading Ramps **Airport Light Guards** Areaways **Boat Landing Ramps Bridge Centerline Markers Bridge Flooring Bridge Sidewalks** Catwalks **Concrete Armoring Concrete Reinforcement Cracking Plant Trays** Crating Crow's Nests **Deflecting Fenders Dipping Trays Drainage Pit Covers** Fencing **Fire Escapes** Floor Boards Flooring

Foot Scrapers Freight Car Flooring Freight Car Top Walkways Ladder Treads **Machine and Motor Bases Machinery Safety Guards Material Screens** Mezzanine Floors Mooring Docks **Ornamental Grills Overhead Sign Platforms** Paint Booths **Parapet Screens** Partitions Platforms **Racks and Shelving Railway Crossings** Ramps **Refrigerator Car Trays Running Boards** Scaffolding

Security Screens Snow Fences Solar Screens Stage Flooring Stairs Stiles Strainers **Temporary Wing Walls Tote Trays and Boxes** Trap Doors **Tree and Pole Guards Trench Covers** Truck Beds **Truck Radiator Grills** Vault Covers Ventilated Bin Floors **Ventilating Screens Vestibule Grates** Walkways Wash Racks Window Guards

ORDERING INFORMATION

INFORMATION TO BE PROVIDED

when specifying or purchasing METAL BAR GRATING:

Description of grating (see standard marking system, page 4 of this Manual)

A drawing, showing: area to be covered (including all cutouts) span (direction of bearing bars) method of support all critical dimensions (indicate whether clearances are taken into account)

Type of anchorage: (see page 14 of this Manual)

Finish: Steel gratings — mill finish, manufacturer's standard paint, or galvanized as specified

Aluminum gratings — mill as fabricated

Stainless steel gratings - mill as fabricated

Shipping instructions

INFORMATION TO BE PROVIDED

when specifying or purchasing METAL BAR GRATING TREADS:

Description of grating (see standard marking system, page 4 of this Manual)

Type of nosing: (see page 18 of this Manual)

Dimensions: width and length of tread

Number of treads

Finish: Steel treads — mill finish, manufacturer's standard paint, or galvanized as specified

Aluminum treads — mill as fabricated

Stainless steel treads — mill as fabricated

Shipping instructions

SPECIFICATIONS

STANDARD SPECIFICATIONS

for Metal Bar Gratings and Treads

A Mediumscope Section under Division 5, Uniform System

I. SCOPE

These specifications apply to metal bar grating and/or metal bar grating treads as hereinafter defined and described.

II. DEFINITIONS

a) Metal bar grating is an open grid of metal bars. The bearing bars, which have a cross-sectional depth much greater than width, are held at regular spacing, usually parallel, either by:

- 1. Straight, sinuous or corrugated cross bars having their longitudinal axis perpendicular to the bearing bars and being connected to them by welding, forging or mechanical locking, or by
- 2. Bent connecting bars alternately contacting adjacent bearing bars and riveted to them at regular intervals.

b) A metal bar grating tread is a stair tread consisting of a panel of metal bar grating having a metal nosing section extending along one of its long edges and a carrier angle or plate at each end for connection to a stringer.

c) Definitions of other terms shall conform to those given in the Glossary of Terms in the Metal Bar Grating Manual.

III. MATERIALS

a) Steel gratings:

Steel used in bearing bars, cross bars and connecting bars of rectangular section shall have mechanical properties equal to, or greater than the performance of ASTM A 1011/A 1011M Commercial Steel (Type B) for hot rolled carbon steel sheet and strip. Cross bars made of wire rod shall conform to ASTM A 510/A 510M for carbon steel wire rods and coarse round wire, except that permissible tolerance on diameter of coarse round wire shall be \pm 0.005 in. (\pm 0.13 mm). Combinations of these steels are permitted to be welded together.

Rivets shall be of steel prescribed in ASTM A 575, 1/4 in. (6.4 mm) minimum diameter, flat head type.

b) Aluminum gratings:

Bearing bars shall be either alloy 6005A-T61, 6061-T6, 6105-T5, or alloy 6063-T6, conforming to ASTM B 221 (B 221M). Cross bars and bent connecting bars shall be of alloy 6061 or 6063 conforming to ASTM B 221 (B 221M), or alloy 3003 conforming to ASTM B 210 (B 210M).

Rivets shall be made of aluminum wire of alloy 6053-T61 conforming to ASTM B 316/B 316M.

c) Stainless steel gratings:

Bearing bars, cross bars, and connecting bars shall be Type 304, 304L, 316, or 316L alloy conforming to ASTM A 666. Rivets shall be of a Type 300 series alloy as prescribed in ASTM A 493.

IV. MINIMUM SIZE OF MEMBERS

a) Size of bearing bars shall conform to the tolerances shown in the Minimum Standard Section, page 7, of the Metal Bar Grating Manual.

b) Minimum dimensions of cross bars shall be as shown on page 7 of the Metal Bar Grating Manual.

c) Banding bars shall have the following minimum thicknesses:

with rectangular bearing bars, the thickness of the bearing bars to which they are attached:

with I-bar section bearing bars, 1/8 in. (3mm).

V. FABRICATION

Basic fabrication of welded, riveted and pressurelocked grating shall be as defined in the Glossary of Terms.

a) All tolerances shall be within the limits shown on page 20 of the Metal Bar Grating Manual.

b) Bandings, nosings, carriers and toe plates, when specified, shall be attached by welding as shown on page 21 of the Metal Bar Grating Manual.

c) All cutouts where more than one bearing bar is cut and bearing bars are not supported shall be load banded.

d) Unless specifically ordered otherwise, no welds anywhere on the grating will be ground.

e) Finishes: Carbon steel gratings shall be specified unfinished, galvanized, or painted one coat of manufacturer's standard paint applied in accordance with the manufacturer's standard practice. One coat of manufacturer's standard paint is designed as an economical solution for many applications. Gratings specified to be galvanized shall have their exposed surfaces zinc-coated by the hot dip process per ASTM A 123 after fabrication. Gratings and/or treads stored at the jobsite shall be covered or under roof. Required covering is not the responsibility of the grating and/or tread supplier.

Unless otherwise specified, abrasive nosings will have the manufacturer's standard finish.

Aluminum and stainless steel gratings shall have a mill (as fabricated) finish, unless otherwise specified.

VI. ANCHORS

Grating anchors shall be supplied by the manufacturer only when specified.

CODE OF STANDARD PRACTICE

CODE OF STANDARD PRACTICE

The following Code represents generally accepted standard practice in the metal bar grating industry. In order to avoid misunderstanding, these practices will apply only to manufacturers individually adopting them, and then, only to the extent each manufacturer has not made unilateral modifications. Each manufacturer is free to modify the Code generally or as it specifically agrees with any Buyer.

1. GENERAL

1.1 Scope and Application

The rules and practices contained in this Code were developed by the NAAMM Metal Bar Grating Division as standard for the industry. Unless specifically stated otherwise, they shall be considered applicable to, and a part of, all contracts relating to the purchase and supply of metal bar gratings and/or treads.

No provisions herein contained, however, shall be construed as denying the right of any company to set its own prices and terms of sale, or restricting any Buyer or Seller from voiding, by mutual agreement, any part of this Code.

1.2 Definitions

As used in this Code, the term "product" or "products" refers to metal bar gratings or metal bar grating treads, and their accessories; the term "Buyer" to the party, or authorized representative of the party, who contracts to purchase such products, and the term "Seller" to the manufacturer who contracts to supply them.

1.3 Designs and Materials

Unless otherwise specified, all designs and materials shall be in accord with the Standard Specifications for Metal Bar Gratings and Treads as published in the NAAMM Metal Bar Grating Manual, latest edition, and the NAAMM Metal Bar Grating Engineering Design Manual, latest edition.

2. QUOTATIONS

2.1 Bidding Plans

Plans intended to serve as the basis for bidding shall provide complete information as to the description of the product, the limits of areas to be covered, the direction of span of grating panels, all supporting members, all cutouts to be provided in the grating area, anchors if required, and finishes desired.

2.2 Basis of Unit Price Quotations

Quotations shall preferably be on the basis of unit price per square foot (square meter) of grating and per tread. The quoted grating price shall be for grating furnished in rectangular sections.

2.3 Extras:

The following are examples of items not included in unit price quotations, and shall be considered as extras in quotations:

Cutting	Degreasing or sandblasting
Banding	Special bundling or strapping
Toe plates	other than steel strapping
Support plates or angles	Field measurements
Hinges	Installation
Locking devices	Any materials, practices or finishes not
Forming, undercutting or notching	called for in the Standard Specifications
Special drilling, punching or tapping	for Metal Bar Gratings and Treads, in-
Anchors	cluding special welding if galvanized in
Bolts for stair treads	accord with ASTM A 385.

Research of structural steel detail drawings to determine the cutout dimensions for vertical bracing and moment connections when such details are not furnished prior to start of preparation of grating drawings.

3. DRAWINGS AND SPECIFICATIONS

3.1 Construction Drawings and Specifications

The Buyer shall be expected to furnish to the Seller an electronic file of construction drawings and specifications of current issue showing the layout of supports and floor openings correctly dimensioned, together with the sizes and types of grating and treads desired. Should cutouts for vertical bracing or moment connections be required for shop fabrication, the structural steel detail drawings shall be furnished prior to the preparation of the grating drawings.

If construction drawings and specifications are not available, the Buyer shall provide complete information regarding all items listed in "Information to be Provided" as shown on page 23 of the NAAMM Metal Bar Grating Manual.

3.2 Limit of Seller's Responsibility

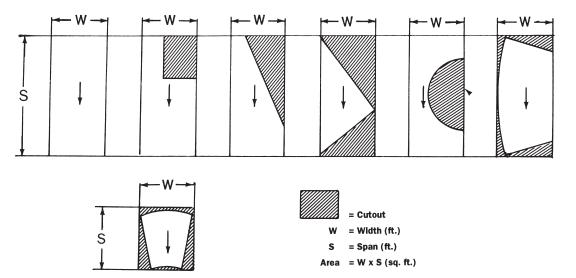
In the absence of written notice to the contrary, the Buyer's construction plans and specifications will be assumed by the Seller to be correct in all details, and the Seller's responsibility shall be limited to furnishing the products in accord with these documents.

3.3 Approval Drawings

If required by the Buyer, the Seller shall submit to the Buyer one electronic copy of detailed drawings in outline form for the latter's review. The Buyer shall return one copy marked with his approval or desired changes. Should changes be required which involve work not called for in the original construction plans and specifications, the Seller shall have the right to charge extra for the engineering work required to make such changes. After all necessary corrections and/or changes are made, the drawings shall be re-submitted to the Buyer for his final review. The Seller shall not proceed with any shop work until drawings are approved for fabrication.

3.4 Installation Drawings

If requested, the Seller shall furnish to the Buyer an electronic copy of all installation drawings.


CODE OF STANDARD PRACTICE

4. GRATING MISCELLANEOUS SUPPORTS

- 4.1 When construction drawings are furnished to the Seller as per item 3.1, drawings shall show and locate all main and miscellaneous structural members intended to support the grating.
- 4.2 To facilitate installation, it may be required to cut the grating panels around penetrations, equipment supports, or other obstructions common to the grating supports. Buyer shall properly review and correct any support deficiencies when such conditions occur.
- 4.3 Seller will not accept any type of backcharges for support deficiencies as insufficient support is considered an omission at time of design.

5. QUANTITY MEASUREMENTS

- 5.1 Quantity measurements for gratings ordered to specific dimensions without drawings, shall be based on span times width of each panel, with no deduction made for cutouts.
- 5.2 Final calculated grating quantities supplied from drawings shall be on the basis of gross area measured center-to-center of supports, or back to back of supporting angles or channels, or overall dimensions of grating, whichever is larger, with no deduction for clearances. Allowances for cutouts shall be determined as follows:
 - a) Deductions in area for circular cutouts will be allowed only when the diameter of the cutout exceeds 3' 6" (1.07m). The deduction allowance will be equal to one-half the square of the diameter of the cutout.
 - b) Deductions in area for cutouts other than circular will be allowed only when the cutout area exceeds nine (9) square feet (0.84 square meter).
 - c) No deductions will be allowed for any triangular segment or corners of gratings wasted in skew cuts.
 - d) For special applications, such as (but not limited to) containment areas in nuclear power plants, the final grating quantities shall be the total gross area of all the pieces furnished with no allowance for cutouts. See the following sketches.

CODE OF STANDARD PRACTICE

- 5.3 Measurement of cuts shall be on the basis of a minimum of one (1) lineal foot (0.30 m) per panel. Any cut in excess of one (1) lineal foot (0.3 m) shall be measured to the next higher lineal foot (0.3 m). (See diagram at the right.)
- 5.4 Measurement of bandings, toe plates and nosings shall be on the same basis as that of cuts, as defined in 5.3.

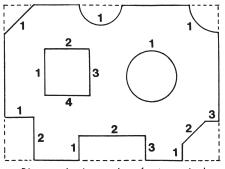


Diagram showing number of cuts required

6. CHANGES IN SCOPE OF CONTRACT

6.1 If at any time during the course of the work, the Buyer orders changes made which require materials and/or labor not called for in the original bidding plans, the cost of making such changes shall be paid by the Buyer at a price to be agreed upon.

7. FIELD WORK

- 7.1 The Seller shall not be responsible for taking actual measurements of construction work in the field.
- 7.2 Backcharges for field work of any kind are not acceptable without prior written authorization by the grating supplier.

8. BACKCHARGES

- 8.1 Upon discovery of unsatisfactory material, the Buyer shall immediately notify the Seller.
- 8.2 The Seller shall acknowledge receipt of the Buyer's complaint and initiate an investigation.
- 8.3 The Seller shall be given the opportunity to inspect the material PRIOR TO ANY CORREC-TIVE WORK BEING DONE.
- 8.4 Seller is responsible for providing grating in accordance with approved drawings and specifications. Seller is not responsible for field changes, drawing changes not received and approved by Seller prior to grating fabrication, improper fabrication and/or erection of supporting members.
- 8.5 If the investigation and inspection confirm errors in Seller fabrication, the Seller agrees to repair and/or replace defective material at no charge to the Buyer.

GLOSSARY

OF TERMS

GLOSSARY OF TERMS

Commonly used in the Industry

- **ANCHOR** A device by which grating is attached to its supports.
- **BAND** A flat welded to a side or end of a grating panel, or along the line of a cutout, and extending neither above nor below the bearing bars.

Load-carrying Band: A band used to transfer the load between bearing bars.

Trim Band: A band which carries no load, but is used chiefly to improve appearance.

- **BEARING BARS** Load-carrying bars made from steel strip or slit sheet or from rolled or extruded aluminum and extending in the direction of the grating span.
- **BEARING BAR CENTERS** The distance center-tocenter of the bearing bars.
- **CARRIERS** Flats or angles which are welded to the grating panel and nosing of a stair tread and are bolted to a stair stringer to support the tread.
- **CLEAR OPENING** The distance between faces of bearing bars in a rectangular grating, or between a bent connecting bar and a bearing bar in a riveted grating.
- **CROSS BARS** The connecting bars, made from steel strip, slit sheet, or rolled bars, or from rolled or extruded aluminum, which extend across the bearing bars, usually perpendicular to them. They may be bent into a corrugated or sinuous pattern and, where they intersect the bearing bars, are welded, forged or mechanically locked to them.
- **CROSS BAR CENTERS** The distance center-tocenter of the cross bars.
- **CURVED CUT**—A cutout following a curved pattern.
- CUTOUT An area of grating removed to clear an

obstruction or to permit pipes, ducts, columns, etc. to pass through the grating.

- **FINISH** The coating, usually paint or galvanizing, which is applied to the grating.
- **GRATING** An open grid assembly of metal bars, in which the bearing bars, running in one direction, are spaced by rigid attachment to cross bars running perpendicular to them or by bent connecting bars extending between them.
- HINGED PANELS Grating panels which are hinged to their supports or to other grating parts.
- I-BAR—An extruded aluminum bearing bar having a cross sectional shape resembling the letter "I".
- LENGTH Refer to Span of Grating.
- LOAD-CARRYING BAND ---- see Band
- **METRIC** The system of metric measurement used is from IEEE/ASTM SI 10-2010, "Standard for Use of the International System of Units (SI): The Modern Metric System".
- **NOSING** A special L-section member serving as the front or leading edge of a stair tread, or of grating at the head of a stair.
- **PRESSURE-LOCKED GRATING** Pressure-locked means bearing bars are locked in position by cross bar deformation instead of riveting or welding.

Several proven methods are:

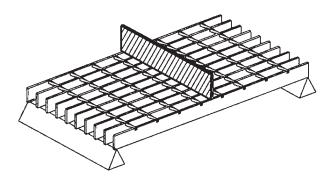
- Expansion of an extruded or drawn tubular cross bar;
- Extruded cross bar deformed or swaged between bearing bars;
- Press assembly of rectangular cross bars into slotted bearing bars.

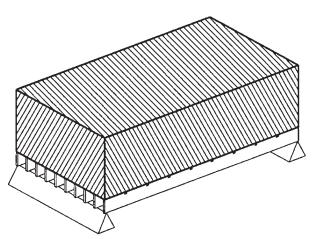
RADIALLY CUT GRATING — Rectangular grating which is cut into panels shaped as angular segments, for use in circular or angular areas.

- **RETICULINE BAR** A sinuously bent connecting bar extending between two adjacent bearing bars, alternately contacting and being riveted to each.
- **REVERSIBLE GRATING** Grating so constructed that it may be installed either side up, with no difference in appearance or carrying capacity.
- **RIVET CENTERS** The distance center to center of rivets along one bearing bar.
- **RIVETED GRATING** Grating composed of straight bearing bars and bent connecting bars, which are joined, at their contact points, by riveting.
- SERRATED GRATING Grating which has the top surfaces of the bearing bars or cross bars, or both, notched.
- **SPAN OF GRATING** The distance between points of grating support, or the dimension of the bearing bars in this direction.
- **STRAIGHT CUT** That portion of the cut edge or cutout of a grating which follows a straight line.

- **SWAGING** A method of altering the cross-sectional shape of a metal bar by pressure applied through dies.
- **TOEPLATE** A flat bar attached flat against the outer edge of a grating or rear edge of a tread, and projecting above the top surface of grating or tread to form a lip or curb.
- **TREAD** A panel of grating having carriers and nosing attached by welding, and designed specifically to serve as a stair tread.

TRIM BAND — see Band


WELDED GRATING — Grating in which the bearing bars and the cross bars are joined at all of their intersections by either a resistance weld or conventional hand welding. A resistance weld is obtained by the heat produced by the resistance of the material to the flow of electric current causing the material to become plastic. At this point, the pressure on the cross bar is rapidly increased causing the cross bar to penetrate the bearing bar so that they are fused together.


WIDTH — The overall dimension of a grating panel, measured normal to the bearing bars.

APPENDIX A

Graphic Depicting the Loadings in Tables

Concentrated Mid Span Load per foot of width

Uniform Load per square foot