

B-Line
by Eston
General Information 3
Load Information 4
PERF-0 GRIP ${ }^{\text {m" }}$ Design Load Tables
2-Hole Planks - 5 " Width
(Steel, Aluminum, Stainless Steel) 5
3-Hole Planks - 7" Width
(Steel, Aluminum, Stainless Steel) 6
5-Hole Planks - 10" Width
(Steel, Aluminum, Stainless Steel) 7
6-Hole Planks - 12" Width
(Steel, Aluminum, Stainless Steel) 8
10-Hole Planks - 18" Width
(Steel, Aluminum) 9
13-Hole Planks - 24" Width (Steel) 10
16-Hole Planks - 30" Width
(Steel) 11
Walkways - 24" \& 30" Width (Steel) 12
PERF-0 GRIP Accessories
P-Bolt Seat 13
J-Clip 14
Mid Clip 15
Splice Plate Kits 16
PERF-O GRIP Stair Treads \& Carrier Plates 17
PERF-0 GRIP Specifications 18-19
How To Order 19

PERF-0 GRIP Pattern

PERF-O GRIP Grating

PERF-0 GRIP Walkway

PERF-O GRIP Stair Tread

B-Line

General Information

PERF-O GRIP ${ }^{m w}$ Safety Grating

PERF-O GRIP safety grating's unique surface of large debossed holes and perforated buttons helps provide maximum slip protection and performance under practically all conditions and in every direction.
The large debossed holes allow fluids, mud, chips and other debris to drain away. With 5 inch high side channels, PERF-O GRIP Walkways meet OSHA requirements for toeboards on elevated structures. Canadian OH \& S compliant designs are also available.
In addition to providing safety, the resilient surface of PERF-O GRIP grating cushions the impact of footfalls thereby lessening worker fatigue and increasing efficiency. PERF-O GRIP safety grating is your best safety buy. It helps cut cost and improve plant productivity.

PERF-O GRIP 2 Safety Grating

We offer a second style of PERF-O GRIP grating. PERF-O GRIP 2 safety grating features $1^{15} / 16^{\prime \prime}$ on center hole spacing (compared to 2" on the original style). In addition, PERF-0 GRIP 2 safety grating can be produced with safety end margins on its 2-hole ($5^{\prime \prime}$ wide) through 6 hole ($12^{\prime \prime}$ wide) plank and without end margins on its 10 -hole ($18^{\prime \prime}$ wide) through 16 -hole ($30^{\prime \prime}$ wide) plank. The original PERF-O GRIP is still available in 2-hole (5 " wide) through 16-hole ($30^{\prime \prime}$ wide).

Safe Surface

Grips soles securely - in all directions. Non-slip PERF-O GRIP safety grating surfaces are ideal for inside or outside locations where mud, ice, snow, oil and detergents can create hazardous walking conditions.

The circular openings (38% of surface area depending on product size) are small enough to catch most falling tools and other dangerous objects. But the self-cleaning open design permits quick drainage of fluids, chips, grease and mud while permitting ventilation and lighting flow. Ice accumulation shears easily under normal foot pressure. Open design allows convenient access for cleaning. PERF-O GRIP is easily cleaned with brush, liquid or air spray if desired.

Helps Extend Life

PERF-O GRIP safety grating offers a high load capacity, long-life, and high strength-to-weight performance; which is achieved through depth of section and structural design. Formed struts with integral side channels form a plank that can support loads with minimum transverse and Iongitudinal deflection. There are no rivets or pressure joints to break or loosen. This sturdy construction provides the advantages of heavy load-carrying capacity with minimal deflection; rugged durability with longer-lasting performance.

Fast Installation

Light, easy-to-handle planks make installation simple and quick. They can be handled by one person. Most sections are rapidly bolted, clamped or welded into place, easily field cut at virtually any angle, or fabricated to adapt to field conditions.
Attachment devices permit fastening to most existing surfaces, allowing for fast installation and disassembly.

Economical To Install and Use

In addition to offering a lowest total installed cost, PERF-O GRIP safety grating also features long-lasting, rust- resistant materials and finishes. Standard millgalvanized finish resists corrosion to provide lasting surfaces. High-strength aluminum, Type 316-2B and Type $304-2 \mathrm{~B}$ stainless steels are available to provide maximum corrosion resistance. Plain unpainted steel (HRP\&O) is available for those installations requiring paint. Lightweight but brawny panels permit substantial reduction in structural steel requirements.

Versatility

A variety of standard widths and channel heights are available as well as numerous non-standard shapes and sizes to meet almost any requirement of strength, size, durability, weight, finish, appearance and application.
PERF-O GRIP safety grating combines safety and durability with ease of fabrication and versatility. One-piece construction - no welds or rivets to fail - minimizes need for field fabrication. Special shapes and forming can be accomplished to suit unusual requirements.
All surfaces are accessible to brush or spray, making it simple and economical to apply finish coatings. PERF-O GRIP safety grating may be hot dipped galvanized after fabrication, anodized, plated, plastic-coated or otherwise finished to suit job requirements. Standard PERF-O GRIP plank is available in materials and sizes to meet most load/span requirements. May be used as is, or banded, cut, welded or notched to suit requirements.
PERF-O GRIP 2 plank with its safety end margins is stocked in $5^{\prime \prime}, 7^{\prime \prime} 10^{\prime \prime}$ and $12^{\prime \prime}$ widths and in $10^{\prime}-0^{\prime \prime}\left(120^{\prime} / 8^{\prime \prime}\right)$ and $12^{\prime}-0^{\prime \prime}\left(144^{\prime \prime}\right)$ lengths. PERF-O GRIP plank is stocked in $18^{\prime \prime}, 24^{\prime \prime}$ and $30^{\prime \prime}$ widths, in $10^{\prime}-0^{\prime \prime}\left(120^{\prime \prime}\right)$ and $12^{\prime}-0^{\prime \prime}\left(144^{\prime \prime}\right)$ lengths. $20^{\prime}-0^{\prime \prime}$ and $24^{\prime}-0^{\prime \prime}$ lengths are available on certain products, consult factory. Other lengths can be manufactured per order requirements. Standard metals are 11 gauge and 13 gauge carbon steel (mill-galvanized), 16 gauge stainless steel (Type $316-2 B$ to $12^{\prime \prime}$ wide), and $.125^{\prime \prime}$ aluminum. PERF-O GRIP can also be manufactured in HRPO steel and stainless steel (Type 304-2B) on special order.

Load Information

How To Read Load Tables

To select the proper size of PERF-0 GRIP ${ }^{\text {Tm }}$ grating, determine load, clear span and deflection requirements by first determining your loading requirements.

Example - Clear span of 4'-0" with a concentrated load requirement of 600 lbs . at 0.25 " maximum deflection, for a $10^{\prime}-0^{\prime \prime}$ wide plank, Refer to the 5 -Hole Plank ($10^{\prime \prime}$ Width), then locate the Clear Span subheading for $4^{\prime}-0^{\prime \prime}$ to find the first occurrence of 600 lbs . (or greater) Concentrated Load (C). In this example, the 13 gauge, $2^{\prime \prime}$ depth product (part number P52013) carries a load of 648 lbs . with a $0.10^{\prime \prime}$ deflection. While this is one product which meets the minimum requirements, other options might be selected to carry greater loads. For economical selection, choose the greatest width that will support the load consistent with job requirements and choose deeper channels rather than heavier steel gauges.

How Load Tables Were Prepared

The values shown in the following tables are based on actual load tests. The tables have been prepared in accordance with the provisions of the AISI Specification for the Design of Cold-Formed Steel Structural Members, 1986 edition.
These load table values are based on consideration of side channel flexure only and do not consider grating surface performance. Side channel flexure occur when the channels at midspan of the plank deflect relative to support points. To verify the performance of the side channels, samples were loaded with concentrated and uniform loads at different spans (See Figures 1 and 2). To approximate the most severe condition, there were no attachments between the channels and the supports.
Deflection values indicated in the tables are the midspan side channel deflection produced when the allowable uniform or allowable concentrated load is placed at midspan. Load data is based on yield strength of $33,000 \mathrm{psi}$ for steel, 27,000 psi for aluminum, 35,000 psi for Type 304 stainless steel, and 30,000 psi for Type 316-2B stainless steel.
$(\mathrm{U})=$ Allowable Uniform Load (Ibs./ft. ${ }^{2}$)
(C) = Allowable Concentrated Load (lbs.) applied by 2 " round bar across full width of grating
(D) = Vertical Deflection (inches) of side channels at mid span resulting from allowable load

Load/Deflection Conversion Formulas

In the elastic range, deflection is proportional to the applied load for both uniform and concentrated loads. This relationship can be used to determine the deflection that any load which is less than the allowable load will
produce, as shown in Example A. If desired, the load which will produce a specific deflection can also be determined if the load is in the elastic range as illustrated in Example B.

Example A

What deflection will a 300 lb . midspan concentrated load produce on a plank spanning 5'-0" (part number P133011page 11)?

C = $1517 \mathrm{lbs} . \quad D=0.09^{\prime \prime}$
D @ 300 lbs. $=0.09$ " $\times(300 \mathrm{lbs} . \div 1517 \mathrm{lbs})=$.0.02 inches

Example B

If a plank (part number P132011 - page 11) is spanning $7^{\prime}-0$ ", what midspan concentrated load will produce a . 25 " deflection?
$\mathrm{C}=598 \mathrm{lbs} . \quad \mathrm{D}=0.27^{\prime \prime}$
C @ . $25^{\prime \prime}=598 \mathrm{lbs} . x\left(0.25^{\prime \prime} \div 0.27^{\prime \prime}\right.$.) $=554 \mathrm{lbs}$.

Special Note On Planks

As width increases, grating surface performance becomes more critical. Thus, for PERF-O GRIP product widths greater than $12^{\prime \prime}$, use of the grating surface splice kit is recommended to mechanically join butt ends of plank sections.

Figure 1. Concentrated Load

Figure 2. Uniform Load

PERF-O GRIP ${ }^{\text {m" }}$ - 2-Hole Plank - 5" Width

PERF-0 GRIP

PERF-0 GRIP 2

Plank Selection/Design Tables

Allowable Loads and Deflections: U=Uniform Load (lb./ft.2) C=Concentrated Load (lb.) $\quad \mathrm{D}=$ Deflection (in.)

Material Gauge	Channel Depth in. (mm)	Weight $\mathrm{lb} . / \mathrm{lin}$. ft . (kg/m)	Catalog Number	Span																	
					2'-0"	2'-6"	$3^{\prime}-0^{\prime \prime}$	$3^{\prime}-6^{\prime \prime}$	4'-0"	$4^{\prime}-6^{\prime \prime}$	5'-0"	5'-6"	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-6^{\prime \prime}$	7'-0"	7'-6"	8'-0"	$9^{\prime}-0^{\prime \prime}$	10'-0"	11'-0"	12'-0"
$\begin{aligned} & \text { Steel } \\ & 13 \mathrm{ga.} \end{aligned}$	$1^{1} / 2^{\prime \prime}$ (38.1)	$\begin{gathered} 2.6 \\ (3.8) \end{gathered}$	$\begin{aligned} & \text { P21513* } \\ & \text { A21513 } \end{aligned}$	U	$\begin{gathered} 2008 \\ .05 \end{gathered}$	$\begin{gathered} 1287 \\ .08 \end{gathered}$	895	$\begin{gathered} 659 \\ .15 \end{gathered}$	$\begin{array}{r} 505 \\ .20 \end{array}$	$\begin{gathered} 400 \\ .25 \end{gathered}$	$\begin{gathered} 325 \\ .31 \end{gathered}$	$\begin{gathered} 269 \\ .38 \end{gathered}$	$\begin{gathered} 227 \\ .45 \end{gathered}$	$\begin{gathered} 194 \\ .53 \end{gathered}$	$\begin{aligned} & 168 \\ & .62 \end{aligned}$	$\begin{gathered} 146 \\ .71 \end{gathered}$	$\begin{aligned} & 130 \\ & .82 \end{aligned}$	$\begin{aligned} & 103 \\ & 1.04 \end{aligned}$	$\begin{gathered} 85 \\ 1.30 \end{gathered}$	$\begin{gathered} 70 \\ 1.57 \end{gathered}$	$\begin{gathered} 60 \\ 1.90 \end{gathered}$
				C	836 .04	$\begin{gathered} 670 \\ .06 \end{gathered}$	$\begin{gathered} 559 \\ .09 \end{gathered}$	$\begin{array}{r} 481 \\ .12 \end{array}$	$\begin{gathered} 421 \\ .16 \end{gathered}$	$\begin{aligned} & 375 \\ & .20 \end{aligned}$	338 .25	$\begin{gathered} 308 \\ .30 \end{gathered}$	$\begin{gathered} 284 \\ .35 \end{gathered}$	$\begin{gathered} 263 \\ .43 \end{gathered}$	244 .49	229 .57	216 .65	194 .83	$\begin{aligned} & 176 \\ & 1.04 \end{aligned}$	$\begin{aligned} & 162 \\ & 1.27 \end{aligned}$	$\begin{aligned} & 150 \\ & 1.52 \end{aligned}$
	$\begin{gathered} 2^{\prime \prime} \\ (50.8) \end{gathered}$	$\begin{gathered} 2.8 \\ (4.1) \end{gathered}$	$\begin{aligned} & \text { P22013* } \\ & \text { A22013 } \end{aligned}$	U	3035	$\begin{gathered} 1944 \\ .06 \end{gathered}$	$\begin{gathered} 1352 \\ .09 \end{gathered}$	$\begin{gathered} 994 \\ .12 \end{gathered}$	$\begin{gathered} 762 \\ .15 \end{gathered}$	$\begin{aligned} & 603 \\ & .19 \end{aligned}$	$\begin{aligned} & 490 \\ & .24 \end{aligned}$	$\begin{gathered} 405 \\ .29 \end{gathered}$	$\begin{gathered} 341 \\ .34 \end{gathered}$	$\begin{gathered} 292 \\ .41 \end{gathered}$	$\begin{gathered} 253 \\ .47 \end{gathered}$	221 .54	$\begin{gathered} 194 \\ .62 \end{gathered}$	155 .79	$\begin{aligned} & 126 \\ & .98 \end{aligned}$	$\begin{aligned} & 105 \\ & 1.20 \end{aligned}$	$\begin{gathered} 89 \\ 1.43 \end{gathered}$
				$\begin{aligned} & C \\ & D \end{aligned}$	$\begin{gathered} 1228 \\ .03 \end{gathered}$	1003	$\begin{gathered} 845 \\ .07 \end{gathered}$	$\begin{gathered} 725 \\ .09 \end{gathered}$	$\begin{aligned} & 635 \\ & .12 \end{aligned}$	$\begin{gathered} 566 \\ .15 \end{gathered}$	$\begin{aligned} & 510 \\ & .19 \end{aligned}$	$\begin{gathered} 465 \\ .23 \end{gathered}$	$\begin{array}{r} 427 \\ .28 \end{array}$	$\begin{gathered} 395 \\ .32 \end{gathered}$	$\begin{array}{r} 368 \\ .38 \end{array}$	$\begin{gathered} 344 \\ .43 \end{gathered}$	324	$\begin{aligned} & 290 \\ & .63 \end{aligned}$	$\begin{gathered} 263 \\ .79 \end{gathered}$	$\begin{gathered} 240 \\ .96 \end{gathered}$	$\begin{aligned} & 223 \\ & 1.15 \end{aligned}$
Alum.$0.125 "$	$\begin{gathered} 2^{\prime \prime} \\ (50.8) \end{gathered}$	$\begin{gathered} 1.3 \\ (1.9) \end{gathered}$	$\begin{aligned} & \text { P220125* } \\ & \text { A220125 } \end{aligned}$	U	$\begin{gathered} 2910 \\ .08 \end{gathered}$	$\begin{gathered} 1863 \\ .12 \end{gathered}$	$\begin{gathered} 1294 \\ .18 \end{gathered}$	$\begin{gathered} 950 \\ .24 \end{gathered}$	$\begin{gathered} 728 \\ .32 \end{gathered}$	$\begin{aligned} & 575 \\ & .40 \end{aligned}$	$\begin{gathered} 466 \\ .50 \end{gathered}$	$\begin{gathered} 385 \\ .60 \end{gathered}$	$\begin{gathered} 323 \\ .72 \end{gathered}$	$\begin{gathered} 276 \\ .84 \end{gathered}$	$\begin{gathered} 237 \\ .98 \end{gathered}$	$\begin{aligned} & 207 \\ & 1.12 \end{aligned}$	$\begin{aligned} & 182 \\ & 1.27 \end{aligned}$	$\begin{aligned} & 143 \\ & 1.61 \end{aligned}$	$\begin{aligned} & 116 \\ & 1.99 \end{aligned}$	$\begin{gathered} 96 \\ 2.41 \end{gathered}$	$\begin{gathered} 81 \\ 2.87 \end{gathered}$
				$\begin{aligned} & C \\ & D \end{aligned}$	$\begin{gathered} 1213 \\ .06 \end{gathered}$	$\begin{aligned} & 970 \\ & .10 \end{aligned}$	809	$\begin{gathered} 693 \\ .20 \end{gathered}$	$\begin{gathered} 606 \\ .25 \end{gathered}$	$\begin{gathered} 539 \\ .32 \end{gathered}$	$\begin{gathered} 485 \\ .40 \end{gathered}$	$\begin{gathered} 441 \\ .48 \end{gathered}$	$\begin{gathered} 404 \\ .57 \end{gathered}$	$\begin{gathered} 373 \\ .67 \end{gathered}$	$\begin{gathered} 346 \\ .78 \end{gathered}$	$\begin{gathered} 323 \\ .90 \end{gathered}$	$\begin{aligned} & 303 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 270 \\ & 1.29 \end{aligned}$	$\begin{aligned} & 243 \\ & 1.60 \end{aligned}$	$\begin{aligned} & 221 \\ & 1.93 \end{aligned}$	$\begin{aligned} & 202 \\ & 2.29 \end{aligned}$
Stainless Steel 16 ga .	$\begin{gathered} 2^{\prime \prime} \\ (50.8) \end{gathered}$	$\begin{gathered} 2.1 \\ (3.1) \end{gathered}$	P22016S* A22016S	U	2781 .05	$\begin{gathered} 2049 \\ .08 \end{gathered}$	$\begin{gathered} 1422 \\ .12 \end{gathered}$	$\begin{gathered} 1046 \\ .16 \end{gathered}$	$\begin{gathered} 800 \\ .21 \end{gathered}$	$\begin{gathered} 632 \\ .26 \end{gathered}$	$\begin{gathered} 512 \\ .32 \end{gathered}$	$\begin{gathered} 424 \\ .39 \end{gathered}$	$\begin{gathered} 355 \\ .46 \end{gathered}$	$\begin{gathered} 303 \\ .54 \end{gathered}$	$\begin{gathered} 262 \\ .63 \end{gathered}$	227 .72	$\begin{gathered} 200 \\ .82 \end{gathered}$	$\begin{aligned} & 159 \\ & 1.04 \end{aligned}$	$\begin{aligned} & 128 \\ & 1.28 \end{aligned}$	$\begin{aligned} & 106 \\ & 1.56 \end{aligned}$	$\begin{gathered} 89 \\ 1.85 \end{gathered}$
				C	1334	$\begin{gathered} 1066 \\ .06 \end{gathered}$	$\begin{gathered} 889 \\ .09 \end{gathered}$	$\begin{aligned} & 761 \\ & .13 \end{aligned}$	$\begin{gathered} 666 \\ .16 \end{gathered}$	$\begin{gathered} 593 \\ .21 \end{gathered}$	$\begin{gathered} 534 \\ .26 \end{gathered}$	$\begin{gathered} 485 \\ .31 \end{gathered}$	$\begin{gathered} 445 \\ .37 \end{gathered}$	$\begin{array}{r} 410 \\ .43 \end{array}$	$\begin{array}{r} 381 \\ .50 \end{array}$	$\begin{gathered} 355 \\ .58 \end{gathered}$	$\begin{gathered} 334 \\ .66 \end{gathered}$	296 .83	$\begin{aligned} & 267 \\ & 1.03 \end{aligned}$	$\begin{aligned} & 243 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 223 \\ & 1.48 \end{aligned}$

* PERF-0 GRIP: To order standard PERF-0 GRIP grating use part number "Pxxxxx".

PERF-O GRIP 2: To order New PERF-0 GRIP 2 grating use part number "Axxxxx". End margins are standard on new PERF-0 GRIP 2 grating 2 -Hole through 6 -Hole plank only ($5^{\prime \prime}$ through $12^{\prime \prime}$ widths). Standard lengths are $10^{\prime}-0^{\prime \prime}$ and $12^{\prime \prime}-0^{\prime \prime}$. Longer lengths of $20^{\prime}-0^{\prime \prime}$ and $24^{\prime}-0^{\prime \prime}$ are available on both PERF-0 GRIP and PERF-0 GRIP 2. Consult factory.

PERF-0 GRIP

PERF-O GRIP 2

Plank Selection/Design Tables
Allowable Loads and Deflections: U=Uniform Load (lb./ft.2) C=Concentrated Load (lb.) D=Deflection (in.)

Material Gauge	Channel Depth in. (mm)	Weight lb./lin. ft . (kg/m)	Catalog Number		Span																
					2'-0"	2'-6"	3'-0"	$3^{\prime}-6{ }^{\prime \prime}$	4'-0"	$4^{\prime \prime} 6^{\prime \prime}$	5'0"	5'-6"	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-6{ }^{\prime \prime}$	7'-0"	7'-6"	$8^{\prime}-0^{\prime \prime}$	$9^{\prime}-0^{\prime \prime}$	10'-0"	11'-0"	12'-0"
$\begin{aligned} & \text { Steel } \\ & 13 \mathrm{ga} . \end{aligned}$	$1^{1 / 2 "}$	3.0	P31513*	U	$\begin{gathered} 1536 \\ .05 \end{gathered}$	$\begin{gathered} 984 \\ .07 \end{gathered}$	$\begin{gathered} 685 \\ .11 \end{gathered}$	$\begin{gathered} 504 \\ .14 \end{gathered}$	$\begin{gathered} 387 \\ .19 \end{gathered}$	$\begin{gathered} 306 \\ .24 \end{gathered}$	$\begin{gathered} 249 \\ .29 \end{gathered}$	$\begin{gathered} 206 \\ .36 \end{gathered}$	$\begin{gathered} 174 \\ .43 \end{gathered}$	$\begin{aligned} & 149 \\ & .50 \end{aligned}$	$\begin{gathered} 129 \\ .58 \end{gathered}$	$\begin{aligned} & 112 \\ & .67 \end{aligned}$	$\begin{aligned} & 100 \\ & .77 \end{aligned}$	$\begin{aligned} & 79 \\ & .98 \end{aligned}$	$\begin{gathered} 65 \\ 1.22 \end{gathered}$	$\begin{gathered} 55 \\ 1.51 \end{gathered}$	$\begin{gathered} 46 \\ 1.81 \end{gathered}$
	(38.1)	(4.4)	A31513	C	$\begin{gathered} 914 \\ .04 \end{gathered}$	$\begin{gathered} 731 \\ .06 \end{gathered}$	$\begin{array}{r} 609 \\ .08 \end{array}$	$\begin{gathered} 522 \\ .12 \end{gathered}$	$\begin{array}{r} 457 \\ .15 \end{array}$	$\begin{aligned} & 406 \\ & .19 \end{aligned}$	$\begin{gathered} 366 \\ .24 \end{gathered}$	$\begin{gathered} 332 \\ .29 \end{gathered}$	$\begin{gathered} 305 \\ .34 \end{gathered}$	$\begin{array}{r} 283 \\ .40 \end{array}$	$\begin{gathered} 263 \\ .47 \end{gathered}$	$\begin{gathered} 246 \\ .54 \end{gathered}$	$\begin{gathered} 232 \\ .61 \end{gathered}$	$\begin{gathered} 208 \\ .78 \end{gathered}$	$\begin{aligned} & 190 \\ & .98 \end{aligned}$	$\begin{aligned} & 174 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 162 \\ & 1.44 \end{aligned}$
	2"	3.3	P32013*	U	1965	$\begin{gathered} 1473 \\ .06 \end{gathered}$	1024	$\begin{aligned} & 754 \\ & .11 \end{aligned}$	$\begin{gathered} 578 \\ .14 \end{gathered}$	$\begin{aligned} & 458 \\ & .18 \end{aligned}$	$\begin{gathered} 371 \\ .23 \end{gathered}$	307	259	$\begin{array}{r} 222 \\ .38 \end{array}$	192	$\begin{gathered} 167 \\ .51 \end{gathered}$	$\begin{gathered} 147 \\ .58 \end{gathered}$	$\begin{gathered} 118 \\ .74 \end{gathered}$	$\begin{aligned} & 96 \\ & .92 \end{aligned}$	$\begin{gathered} 80 \\ 1.13 \end{gathered}$	$\begin{gathered} 68 \\ 1.36 \end{gathered}$
	(50.8)	(4.9)	A32013	C	$\begin{gathered} 1369 \\ .03 \end{gathered}$	$\begin{gathered} 1096 \\ .05 \end{gathered}$	$\begin{gathered} 913 \\ .07 \end{gathered}$	$\begin{gathered} 783 \\ .09 \end{gathered}$	$\begin{aligned} & 685 \\ & .12 \end{aligned}$	$\begin{aligned} & 609 \\ & .15 \end{aligned}$	$\begin{gathered} 548 \\ .18 \end{gathered}$	$\begin{aligned} & 498 \\ & .22 \end{aligned}$	$\begin{gathered} 456 \\ .26 \end{gathered}$	$\begin{array}{r} 421 \\ .31 \end{array}$	$\begin{gathered} 391 \\ .35 \end{gathered}$	$\begin{gathered} 366 \\ .41 \end{gathered}$	$\begin{gathered} 344 \\ .47 \end{gathered}$	$\begin{gathered} 308 \\ .59 \end{gathered}$	$\begin{gathered} 279 \\ .74 \end{gathered}$	$\begin{gathered} 257 \\ .90 \end{gathered}$	$\begin{aligned} & 237 \\ & 1.08 \end{aligned}$
Steel 11 ga.	$1^{1 / 2 "}$	4.2	P31511*	U	$\begin{gathered} 1981 \\ .05 \end{gathered}$	$\begin{gathered} 1269 \\ .07 \end{gathered}$	$\begin{gathered} 883 \\ .11 \end{gathered}$	$\begin{aligned} & 650 \\ & .15 \end{aligned}$	$\begin{gathered} 498 \\ .19 \end{gathered}$	$\begin{gathered} 394 \\ .24 \end{gathered}$	$\begin{gathered} 320 \\ .30 \end{gathered}$	$\begin{gathered} 265 \\ .36 \end{gathered}$	$\begin{gathered} 224 \\ .43 \end{gathered}$	191	$\begin{gathered} 165 \\ .59 \end{gathered}$	$\begin{gathered} 144 \\ .68 \end{gathered}$	$\begin{aligned} & 128 \\ & .78 \end{aligned}$	$\begin{aligned} & 101 \\ & .98 \end{aligned}$	$\begin{gathered} 83 \\ 1.22 \end{gathered}$	$\begin{gathered} 69 \\ 1.50 \end{gathered}$	$\begin{gathered} 59 \\ 1.81 \end{gathered}$
	(38.1)	(6.2)	A31511	C	$\begin{gathered} 1165 \\ .04 \end{gathered}$	$\begin{gathered} 932 \\ .06 \end{gathered}$	$\begin{gathered} 777 \\ .09 \end{gathered}$	$\begin{aligned} & 666 \\ & .12 \end{aligned}$	$\begin{gathered} 582 \\ .15 \end{gathered}$	$\begin{gathered} 518 \\ .19 \end{gathered}$	$\begin{array}{r} 467 \\ .24 \end{array}$	$\begin{gathered} 426 \\ .29 \end{gathered}$	$\begin{gathered} 391 \\ .34 \end{gathered}$	$\begin{gathered} 362 \\ .40 \end{gathered}$	$\begin{gathered} 337 \\ .47 \end{gathered}$	$\begin{gathered} 316 \\ .54 \end{gathered}$	$\begin{gathered} 297 \\ .62 \end{gathered}$	$\begin{gathered} 266 \\ .79 \end{gathered}$	$\begin{gathered} 241 \\ .98 \end{gathered}$	$\begin{aligned} & 222 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 205 \\ & 1.44 \end{aligned}$
	2"	4.5	P32011*	U	$\begin{gathered} 2899 \\ .03 \end{gathered}$	$\begin{gathered} 1978 \\ .06 \end{gathered}$	$\begin{gathered} 1375 \\ .08 \end{gathered}$	$\begin{gathered} 1012 \\ .11 \end{gathered}$	$\begin{aligned} & 776 \\ & .15 \end{aligned}$	$\begin{aligned} & 614 \\ & .19 \end{aligned}$	$\begin{gathered} 498 \\ .23 \end{gathered}$	$\begin{gathered} 411 \\ .28 \end{gathered}$	$\begin{gathered} 347 \\ .34 \end{gathered}$	$\begin{gathered} 302 \\ .40 \end{gathered}$	$\begin{gathered} 261 \\ .47 \end{gathered}$	$\begin{array}{r} 228 \\ .54 \end{array}$	$\begin{gathered} 201 \\ .62 \end{gathered}$	$\begin{aligned} & 160 \\ & .78 \end{aligned}$	$\begin{gathered} 130 \\ .97 \end{gathered}$	$\begin{aligned} & 108 \\ & 1.18 \end{aligned}$	$\begin{gathered} 92 \\ 1.42 \end{gathered}$
	(50.8)	(6.7)	A32011	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{gathered} 1762 \\ .03 \end{gathered}$	$\begin{gathered} 1410 \\ .05 \end{gathered}$	$\begin{gathered} 1175 \\ .07 \end{gathered}$	$\begin{gathered} 1032 \\ .09 \end{gathered}$	$\begin{gathered} 904 \\ .12 \end{gathered}$	$\begin{gathered} 805 \\ .15 \end{gathered}$	$\begin{gathered} 726 \\ .19 \end{gathered}$	$\begin{aligned} & 661 \\ & .23 \end{aligned}$	$\begin{gathered} 607 \\ .27 \end{gathered}$	$\begin{gathered} 573 \\ .32 \end{gathered}$	$\begin{gathered} 533 \\ .37 \end{gathered}$	$\begin{aligned} & 499 \\ & .43 \end{aligned}$	$\begin{array}{r} 469 \\ .49 \end{array}$	$\begin{gathered} 420 \\ .63 \end{gathered}$	$\begin{array}{r} 380 \\ .78 \end{array}$	$\begin{gathered} 348 \\ .95 \end{gathered}$	$\begin{aligned} & 321 \\ & 1.14 \end{aligned}$
	3"	4.8	P33011*	U	$\begin{gathered} 5806 \\ .03 \end{gathered}$	$\begin{gathered} 3716 \\ .04 \end{gathered}$	$\begin{gathered} 2581 \\ .06 \end{gathered}$	$\begin{gathered} 1898 \\ .08 \end{gathered}$	1454	$\begin{gathered} 1150 \\ .13 \end{gathered}$	$\begin{gathered} 932 \\ .17 \end{gathered}$	$\begin{aligned} & 771 \\ & .20 \end{aligned}$	$\begin{gathered} 649 \\ .24 \end{gathered}$	$\begin{gathered} 554 \\ .28 \end{gathered}$	$\begin{gathered} 479 \\ .33 \end{gathered}$	$\begin{gathered} 417 \\ .37 \end{gathered}$	$\begin{gathered} 367 \\ .43 \end{gathered}$	$\begin{gathered} 291 \\ .54 \end{gathered}$	$\begin{gathered} 236 \\ .67 \end{gathered}$	$\begin{aligned} & 196 \\ & .81 \end{aligned}$	$\begin{aligned} & 166 \\ & .98 \end{aligned}$
	(76.2)	(7.1)	A33011	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{gathered} 3188 \\ .02 \end{gathered}$	$\begin{gathered} 2550 \\ .03 \end{gathered}$	$\begin{gathered} 2125 \\ .04 \end{gathered}$	$\begin{gathered} 1822 \\ .06 \end{gathered}$	$\begin{gathered} 1594 \\ .07 \end{gathered}$	$\begin{gathered} 1417 \\ .10 \end{gathered}$	$\begin{gathered} 1275 \\ .12 \end{gathered}$	$\begin{gathered} 1159 \\ .15 \end{gathered}$	$\begin{gathered} 1132 \\ .19 \end{gathered}$	$\begin{gathered} 1050 \\ .22 \end{gathered}$	$\begin{gathered} 976 \\ .26 \end{gathered}$	$\begin{gathered} 913 \\ .30 \end{gathered}$	$\begin{gathered} 857 \\ .34 \end{gathered}$	$\begin{gathered} 764 \\ .43 \end{gathered}$	$\begin{gathered} 690 \\ .54 \end{gathered}$	$\begin{gathered} 630 \\ .65 \end{gathered}$	$\begin{gathered} 581 \\ .78 \end{gathered}$
$\begin{aligned} & \text { Alum. } \\ & 0.125 " \end{aligned}$	2"	1.5	P320125*	U	2138	1491	$\begin{gathered} 1035 \\ .20 \end{gathered}$	$\begin{aligned} & 761 \\ & .27 \end{aligned}$	$\begin{gathered} 582 \\ .35 \end{gathered}$	$\begin{aligned} & 460 \\ & .44 \end{aligned}$	$\begin{gathered} 372 \\ .54 \end{gathered}$	$\begin{gathered} 308 \\ .66 \end{gathered}$	$\begin{gathered} 258 \\ .78 \end{gathered}$	$\begin{gathered} 221 \\ .92 \end{gathered}$	$\begin{aligned} & 190 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 166 \\ & 1.23 \end{aligned}$	$\begin{aligned} & 146 \\ & 1.39 \end{aligned}$	$\begin{aligned} & 115 \\ & 1.76 \end{aligned}$	$\begin{gathered} 93 \\ 2.18 \end{gathered}$	$\begin{gathered} 77 \\ 2.64 \end{gathered}$	$\begin{gathered} 65 \\ 3.14 \end{gathered}$
	(50.8)	(2.2)	A320125	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{gathered} 1509 \\ .07 \end{gathered}$	$\begin{gathered} 1207 \\ .11 \end{gathered}$	$\begin{gathered} 1006 \\ .16 \end{gathered}$	$\begin{gathered} 862 \\ .21 \end{gathered}$	$\begin{gathered} 755 \\ .28 \end{gathered}$	$\begin{gathered} 671 \\ .35 \end{gathered}$	$\begin{gathered} 604 \\ .44 \end{gathered}$	$\begin{gathered} 549 \\ .53 \end{gathered}$	$\begin{gathered} 503 \\ .63 \end{gathered}$	$\begin{gathered} 464 \\ .74 \end{gathered}$	$\begin{gathered} 431 \\ .85 \end{gathered}$	$\begin{gathered} 402 \\ .98 \end{gathered}$	$\begin{aligned} & 377 \\ & 1.12 \end{aligned}$	$\begin{aligned} & 335 \\ & 1.41 \end{aligned}$	$\begin{aligned} & 302 \\ & 1.74 \end{aligned}$	$\begin{aligned} & 274 \\ & 2.11 \end{aligned}$	$\begin{aligned} & 252 \\ & 2.51 \end{aligned}$
Stainless Steel 16 ga .	2"	2.4	P32016S*	U	$\begin{gathered} 1419 \\ .03 \end{gathered}$	$\begin{gathered} 1399 \\ .07 \end{gathered}$	971 .10	714 .13	546 $\text { . } 17$	$\begin{gathered} 432 \\ .22 \end{gathered}$	$\begin{array}{r} 350 \\ .27 \end{array}$	$\begin{gathered} 289 \\ .33 \end{gathered}$	$\begin{gathered} 243 \\ .39 \end{gathered}$	$\begin{gathered} 207 \\ .46 \end{gathered}$	$\begin{gathered} 178 \\ .53 \end{gathered}$	$\begin{aligned} & 155 \\ & .61 \end{aligned}$	$\begin{aligned} & 137 \\ & .70 \end{aligned}$	$\begin{array}{r} 107 \\ .88 \end{array}$	$\begin{gathered} 88 \\ 1.09 \end{gathered}$	$\begin{gathered} 72 \\ 1.31 \end{gathered}$	$\begin{gathered} 61 \\ 1.56 \end{gathered}$
	(50.8)	(3.6)	A32016S	C	$\begin{gathered} 1275 \\ .03 \end{gathered}$	$\begin{gathered} 1021 \\ .05 \end{gathered}$	$\begin{gathered} 850 \\ .08 \end{gathered}$	$\begin{gathered} 729 \\ .11 \end{gathered}$	$\begin{gathered} 638 \\ .14 \end{gathered}$	$\begin{gathered} 567 \\ .18 \end{gathered}$	$\begin{gathered} 510 \\ .22 \end{gathered}$	$\begin{gathered} 464 \\ .26 \end{gathered}$	$\begin{gathered} 425 \\ .31 \end{gathered}$	$\begin{gathered} 392 \\ .37 \end{gathered}$	$\begin{array}{r} 365 \\ .43 \end{array}$	$\begin{gathered} 341 \\ .49 \end{gathered}$	$\begin{gathered} 319 \\ .56 \end{gathered}$	$\begin{aligned} & 283 \\ & .70 \end{aligned}$	$\begin{gathered} 255 \\ .87 \end{gathered}$	$\begin{aligned} & 232 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 213 \\ & 1.25 \end{aligned}$

* PERF-0 GRIP: To order standard PERF-0 GRIP grating use part number "Pxxxxx".

PERF-O GRIP 2: To order New PERF-O GRIP 2 grating use part number "Axxxxx". End margins are standard on new PERF-0 GRIP 2 grating 2 -Hole through 6 -Hole plank only ($5^{\prime \prime}$ through $12^{\prime \prime}$ widths). Standard lengths are $10^{\prime}-0^{\prime \prime}$ and $12^{\prime}-0^{\prime \prime}$.
Longer lengths of $20^{\prime}-0^{\prime \prime}$ and $24^{\prime}-0^{\prime \prime}$ are available on both PERF-O GRIP and PERF-0 GRIP 2. Consult factory.

Grating Load Tables

PERF-O GRIP ${ }^{\text {m" }} \mathbf{- 5 - H o l e ~ P l a n k ~ - ~ 1 0 " ~ W i d t h ~}$

PERF-0 GRIP

PERF-0 GRIP 2

Plank Selection/Design Tables
Allowable Loads and Deflections: U=Uniform Load (lb./ft.2) C=Concentrated Load (lb.) $\quad \mathrm{D}=$ Deflection (in.)

Material Gauge	Channel Depth in. (mm)	Weight lb./lin. ft . (kg/m)	Catalog Number	Span																	
					2'-0"	2'-6"	3'-0"	$3^{\prime}-6^{\prime \prime}$	4'-0"	$4^{\prime \prime}-6^{\prime \prime}$	5'-0"	5'-6"	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-6^{\prime \prime}$	7'-0"	7'-6"	8'-0"	9'-0"	10'-0"	11'-0"	12'-0"
$\begin{aligned} & \text { Steel } \\ & 13 \mathrm{ga.} \end{aligned}$	$1^{1 / 2} 2^{\prime \prime}$	3.5	P51513*	U D	$\begin{gathered} 963 \\ .04 \end{gathered}$	$\begin{gathered} 745 \\ .08 \end{gathered}$	517	380	$\begin{aligned} & 291 \\ & .19 \end{aligned}$	$\begin{gathered} 230 \\ .24 \end{gathered}$	$\begin{aligned} & 187 \\ & .30 \end{aligned}$	$\begin{aligned} & 154 \\ & .36 \end{aligned}$	$\begin{aligned} & 129 \\ & .43 \end{aligned}$	$\begin{gathered} 110 \\ .51 \end{gathered}$	$\begin{aligned} & 95 \\ & .59 \end{aligned}$	$\begin{aligned} & 83 \\ & .67 \end{aligned}$	73	58	$\begin{gathered} 46 \\ 1.20 \end{gathered}$	$\begin{gathered} 38 \\ 1.44 \end{gathered}$	$\begin{gathered} 32 \\ 1.71 \end{gathered}$
	(38.1)	(5.2)	A51513	C	$\begin{gathered} 855 \\ .03 \end{gathered}$	$\begin{gathered} 684 \\ .05 \end{gathered}$	$\begin{gathered} 645 \\ .09 \end{gathered}$	$\begin{gathered} 554 \\ .12 \end{gathered}$	$\begin{gathered} 485 \\ .15 \end{gathered}$	$\begin{gathered} 431 \\ .19 \end{gathered}$	$\begin{gathered} 388 \\ .24 \end{gathered}$	$\begin{gathered} 353 \\ .29 \end{gathered}$	$\begin{gathered} 323 \\ .35 \end{gathered}$	$\begin{aligned} & 298 \\ & .41 \end{aligned}$	$\begin{gathered} 277 \\ .47 \end{gathered}$	$\begin{gathered} 259 \\ .54 \end{gathered}$	$\begin{gathered} 242 \\ .61 \end{gathered}$	$\begin{gathered} 216 \\ .78 \end{gathered}$	$\begin{aligned} & 191 \\ & .95 \end{aligned}$	$\begin{aligned} & 176 \\ & 1.16 \end{aligned}$	$\begin{aligned} & 162 \\ & 1.39 \end{aligned}$
	2"	3.9	P52013*	$\begin{aligned} & \text { U } \\ & \text { D } \end{aligned}$	1735	$\begin{gathered} 1110 \\ .06 \end{gathered}$	$\begin{aligned} & 771 \\ & .08 \end{aligned}$	$\begin{gathered} 568 \\ .11 \end{gathered}$	$\begin{gathered} 435 \\ .15 \end{gathered}$	$\begin{gathered} 344 \\ .18 \end{gathered}$	$\begin{gathered} 281 \\ .23 \end{gathered}$	$\begin{gathered} 232 \\ .28 \end{gathered}$	$\begin{aligned} & 196 \\ & .33 . \end{aligned}$	$\begin{aligned} & 167 \\ & .39 \end{aligned}$	$\begin{aligned} & 144 \\ & .45 \end{aligned}$	$\begin{gathered} 126 \\ .52 \end{gathered}$	$\begin{aligned} & 110 \\ & .59 \end{aligned}$	$\begin{aligned} & 88 \\ & .75 \end{aligned}$	$\begin{aligned} & 70 \\ & .91 \end{aligned}$	$\begin{gathered} 60 \\ 1.14 \end{gathered}$	$\begin{gathered} 50 \\ 1.34 \end{gathered}$
	(50.8)	(5.8)	A52013	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{gathered} 1297 \\ .02 \end{gathered}$	$\begin{gathered} 1038 \\ .04 \end{gathered}$	$\begin{gathered} 865 \\ .05 \end{gathered}$	$\begin{gathered} 741 \\ .08 \end{gathered}$	$\begin{gathered} 648 \\ .10 \end{gathered}$	$\begin{gathered} 645 \\ .15 \end{gathered}$	$\begin{gathered} 584 \\ .18 \end{gathered}$	$\begin{gathered} 532 \\ .22 \end{gathered}$	$\begin{gathered} 489 \\ .26 \end{gathered}$	$\begin{gathered} 453 \\ .31 \end{gathered}$	$\begin{gathered} 422 \\ .36 \end{gathered}$	$\begin{gathered} 392 \\ .41 \end{gathered}$	$\begin{gathered} 368 \\ .47 \end{gathered}$	$\begin{aligned} & 327 \\ & .60 \end{aligned}$	$\begin{gathered} 297 \\ .79 \end{gathered}$	$\begin{gathered} 267 \\ .89 \end{gathered}$	$\begin{aligned} & 245 \\ & 1.06 \end{aligned}$
$\begin{aligned} & \text { Steel } \\ & 11 \mathrm{ga.} \end{aligned}$	$1^{1 / 2 \prime}{ }^{\prime \prime}$	4.5	P51511*	U	$\begin{gathered} 1385 \\ .05 \end{gathered}$	$\begin{gathered} 888 \\ .07 \end{gathered}$	$\begin{array}{r} 618 \\ .10 \end{array}$	$\begin{gathered} 455 \\ .14 \end{gathered}$	$\begin{gathered} 349 \\ .18 \end{gathered}$	$\begin{gathered} 276 \\ .23 \end{gathered}$	$\begin{gathered} 225 \\ .29 \end{gathered}$	$\begin{aligned} & 186 \\ & .35 \end{aligned}$	$\begin{aligned} & 157 \\ & .41 \end{aligned}$	$\begin{aligned} & 134 \\ & .49 \end{aligned}$	$\begin{gathered} 117 \\ .57 \end{gathered}$	$\begin{aligned} & 101 \\ & .65 \end{aligned}$	$\begin{aligned} & 90 \\ & .75 \end{aligned}$	$\begin{aligned} & 71 \\ & .95 \end{aligned}$	$\begin{gathered} 59 \\ 1.20 \end{gathered}$	$\begin{gathered} 48 \\ 1.45 \end{gathered}$	$\begin{gathered} 41 \\ 1.74 \end{gathered}$
	(38.1)	(6.7)	A51511	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{gathered} 1086 \\ .03 \end{gathered}$	$\begin{gathered} 888 \\ .05 \end{gathered}$	$\begin{gathered} 772 \\ .08 \end{gathered}$	$\begin{gathered} 663 \\ .11 \end{gathered}$	$\begin{gathered} 582 \\ .15 \end{gathered}$	$\begin{aligned} & 518 \\ & .18 \end{aligned}$	$\begin{gathered} 467 \\ .23 \end{gathered}$	$\begin{gathered} 426 \\ .28 \end{gathered}$	$\begin{gathered} 392 \\ .33 \end{gathered}$	$\begin{gathered} 363 \\ .39 \end{gathered}$	$\begin{gathered} 338 \\ .45 \end{gathered}$	$\begin{gathered} 318 \\ .52 \end{gathered}$	$\begin{aligned} & 299 \\ & .60 \end{aligned}$	$\begin{gathered} 268 \\ .76 \end{gathered}$	$\begin{gathered} 244 \\ .96 \end{gathered}$	$\begin{aligned} & 225 \\ & 1.17 \end{aligned}$	$\begin{aligned} & 205 \\ & 1.39 \end{aligned}$
	2"	5.1	P52011*	U	$\begin{gathered} 2261 \\ .04 \end{gathered}$	$\begin{gathered} 1447 \\ .06 \end{gathered}$	$\begin{gathered} 1005 \\ .08 \end{gathered}$	$\begin{gathered} 739 \\ .11 \end{gathered}$	$\begin{gathered} 567 \\ .15 \end{gathered}$	$\begin{gathered} 449 \\ .19 \end{gathered}$	$\begin{gathered} 364 \\ .23 \end{gathered}$	$\begin{gathered} 300 \\ .28 \end{gathered}$	$\begin{gathered} 253 \\ .33 \end{gathered}$	$\begin{gathered} 216 \\ .39 \end{gathered}$	$\begin{aligned} & 186 \\ & .45 \end{aligned}$	$\begin{gathered} 162 \\ .52 \end{gathered}$	$\begin{gathered} 142 \\ .59 \end{gathered}$	$\begin{gathered} 112 \\ .75 \end{gathered}$	$\begin{aligned} & 91 \\ & .92 \end{aligned}$	$\begin{gathered} 75 \\ 1.12 \end{gathered}$	$\begin{gathered} 63 \\ 1.32 \end{gathered}$
	(50.8)	(7.6)	A52011	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{gathered} 1670 \\ .02 \end{gathered}$	$\begin{gathered} 1336 \\ .04 \end{gathered}$	$\begin{gathered} 1113 \\ .06 \end{gathered}$	$\begin{gathered} 954 \\ .08 \end{gathered}$	$\begin{gathered} 888 \\ .11 \end{gathered}$	$\begin{gathered} 823 \\ .14 \end{gathered}$	$\begin{aligned} & 758 \\ & .18 \end{aligned}$	$\begin{gathered} 689 \\ .22 \end{gathered}$	$\begin{gathered} 631 \\ .27 \end{gathered}$	$\begin{gathered} 583 \\ .31 \end{gathered}$	$\begin{gathered} 541 \\ .36 \end{gathered}$	$\begin{gathered} 505 \\ .42 \end{gathered}$	$\begin{gathered} 473 \\ .47 \end{gathered}$	$\begin{gathered} 421 \\ .60 \end{gathered}$	$\begin{gathered} 378 \\ .74 \end{gathered}$	$\begin{gathered} 344 \\ .89 \end{gathered}$	$\begin{aligned} & 316 \\ & 1.06 \end{aligned}$
	3"	5.1	P53011*	U	$\begin{gathered} 4214 \\ .03 \end{gathered}$	$\begin{gathered} 2697 \\ .04 \end{gathered}$	$\begin{gathered} 1873 \\ .06 \end{gathered}$	$\begin{gathered} 1376 \\ .08 \end{gathered}$	$\begin{gathered} 1053 \\ .10 \end{gathered}$	$\begin{aligned} & 832 \\ & .13 \end{aligned}$	$\begin{gathered} 674 \\ .16 \end{gathered}$	$\begin{gathered} 557 \\ .19 \end{gathered}$	$\begin{gathered} 468 \\ .23 \end{gathered}$	399 .27	$\begin{gathered} 344 \\ .31 \end{gathered}$	$\begin{gathered} 300 \\ .35 \end{gathered}$	$\begin{gathered} 263 \\ .41 \end{gathered}$	$\begin{gathered} 208 \\ .52 \end{gathered}$	$\begin{aligned} & 168 \\ & .64 \end{aligned}$	$\begin{aligned} & 139 \\ & .77 \end{aligned}$	$\begin{aligned} & 117 \\ & .92 \end{aligned}$
	(76.2)	(7.6)	A53011	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{gathered} 3095 \\ .02 \end{gathered}$	$\begin{gathered} 2476 \\ .03 \end{gathered}$	$\begin{gathered} 2064 \\ .04 \end{gathered}$	$\begin{gathered} 1769 \\ .05 \end{gathered}$	$\begin{gathered} 1548 \\ .07 \end{gathered}$	$\begin{gathered} 1376 \\ .08 \end{gathered}$	$\begin{gathered} 1238 \\ .11 \end{gathered}$	$\begin{gathered} 1126 \\ .14 \end{gathered}$	$\begin{gathered} 1032 \\ .16 \end{gathered}$	$\begin{gathered} 952 \\ .19 \end{gathered}$	$\begin{gathered} 927 \\ .24 \end{gathered}$	$\begin{gathered} 902 \\ .28 \end{gathered}$	$\begin{gathered} 878 \\ .33 \end{gathered}$	$\begin{aligned} & 781 \\ & .41 \end{aligned}$	$\begin{gathered} 702 \\ .51 \end{gathered}$	$\begin{gathered} 638 \\ .62 \end{gathered}$	$\begin{gathered} 585 \\ .74 \end{gathered}$
Alum.$0.125 "$	2"	1.8	P520125*	U	$\begin{gathered} 1048 \\ .05 \end{gathered}$	$\begin{gathered} 1022 \\ .12 \end{gathered}$	$\begin{aligned} & 710 \\ & .18 \end{aligned}$	$\begin{gathered} 522 \\ .24 \end{gathered}$	$\begin{gathered} 400 \\ .31 \end{gathered}$	$\begin{aligned} & 316 \\ & .40 \end{aligned}$	$\begin{aligned} & 256 \\ & .49 \end{aligned}$	$\begin{gathered} 212 \\ .59 \end{gathered}$	$\begin{aligned} & 178 \\ & .71 \end{aligned}$	$\begin{aligned} & 153 \\ & .83 \end{aligned}$	$\begin{aligned} & 131 \\ & .96 \end{aligned}$	$\begin{aligned} & 115 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 101 \\ & 1.26 \end{aligned}$	$\begin{gathered} 80 \\ 1.59 \end{gathered}$	$\begin{gathered} 65 \\ 1.96 \end{gathered}$	$\begin{gathered} 54 \\ 2.37 \end{gathered}$	$\begin{gathered} 46 \\ 2.83 \end{gathered}$
	(50.8)	(2.7)	A520125	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{gathered} 1431 \\ .06 \end{gathered}$	$\begin{gathered} 1145 \\ .09 \end{gathered}$	$\begin{gathered} 954 \\ .13 \end{gathered}$	$\begin{gathered} 818 \\ .19 \end{gathered}$	$\begin{gathered} 715 \\ .25 \end{gathered}$	$\begin{gathered} 636 \\ .32 \end{gathered}$	$\begin{gathered} 572 \\ .39 \end{gathered}$	$\begin{gathered} 520 \\ .47 \end{gathered}$	$\begin{gathered} 477 \\ .57 \end{gathered}$	$\begin{gathered} 440 \\ .66 \end{gathered}$	$\begin{gathered} 409 \\ .77 \end{gathered}$	$\begin{gathered} 382 \\ .88 \end{gathered}$	$\begin{aligned} & 358 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 318 \\ & 1.27 \end{aligned}$	$\begin{aligned} & 286 \\ & 1.57 \end{aligned}$	$\begin{aligned} & 260 \\ & 1.90 \end{aligned}$	$\begin{aligned} & 238 \\ & 2.26 \end{aligned}$
Stainless Steel 16 ga .	2"	2.7	P52016S*	U	$\begin{gathered} 1418 \\ .04 \end{gathered}$	$\begin{gathered} 907 \\ .07 \end{gathered}$	$\begin{array}{r} 630 \\ .10 \end{array}$	$\begin{gathered} 463 \\ .13 \end{gathered}$	$\begin{gathered} 354 \\ .17 \end{gathered}$	$\begin{array}{r} 280 \\ .21 \end{array}$	$\begin{gathered} 226 \\ .26 \end{gathered}$	$\begin{aligned} & 187 \\ & .32 \end{aligned}$	$\begin{aligned} & 158 \\ & .38 \end{aligned}$	$\begin{aligned} & 134 \\ & .44 \end{aligned}$	$\begin{gathered} 115 \\ .52 \end{gathered}$	$\begin{gathered} 101 \\ .59 \end{gathered}$	$\begin{aligned} & 88 \\ & .67 \end{aligned}$	$\begin{aligned} & 70 \\ & .85 \end{aligned}$	$\begin{gathered} 57 \\ 1.06 \end{gathered}$	$\begin{gathered} 47 \\ 1.28 \end{gathered}$	$\begin{gathered} 39 \\ 1.50 \end{gathered}$
	(50.8)	(4.0)	A52016S	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{gathered} 1148 \\ .03 \end{gathered}$	$\begin{gathered} 918 \\ .05 \end{gathered}$	$\begin{gathered} 765 \\ .07 \end{gathered}$	$\begin{gathered} 656 \\ .10 \end{gathered}$	$\begin{gathered} 574 \\ .13 \end{gathered}$	$\begin{gathered} 510 \\ .17 \end{gathered}$	$\begin{gathered} 459 \\ .21 \end{gathered}$	$\begin{gathered} 430 \\ .26 \end{gathered}$	$\begin{gathered} 393 \\ .30 \end{gathered}$	$\begin{gathered} 363 \\ .36 \end{gathered}$	$\begin{array}{r} 337 \\ .41 \end{array}$	$\begin{gathered} 315 \\ .48 \end{gathered}$	$\begin{gathered} 295 \\ .54 \end{gathered}$	$\begin{gathered} 263 \\ .69 \end{gathered}$	$\begin{gathered} 237 \\ .85 \end{gathered}$	$\begin{aligned} & 215 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 197 \\ & 1.22 \end{aligned}$

* PERF-0 GRIP: To order standard PERF-0 GRIP grating use part number "Pxxxxx".

PERF-0 GRIP 2: To order New PERF-0 GRIP 2 grating use part number "Axxxxx". End margins are standard on new PERF-0 GRIP 2 grating 2 -Hole through 6 -Hole plank only ($5^{\prime \prime}$ through $12^{\prime \prime}$ widths). Standard lengths are $10^{\prime}-0^{\prime \prime}$ and $12^{\prime \prime}-0^{\prime \prime}$. Longer lengths of $20^{\prime}-0^{\prime \prime}$ and $24^{\prime}-0^{\prime \prime}$ are available on both PERF-0 GRIP and PERF-0 GRIP 2. Consult factory.

PERF-O GRIP 2

Plank Selection/Design Tables
Allowable Loads and Deflections: U=Uniform Load (lb./ft.2) C=Concentrated Load (lb.) $\quad \mathrm{D}=$ =Deflection (in.)

Material Gauge	Channel Depth in. (mm)	Weight lb./lin. ft . (kg/m)	Catalog Number		Span																
					2'-0"	$2^{\prime}-6{ }^{\prime \prime}$	3'-0"	$3^{\prime}-6{ }^{\prime \prime}$	4'-0"	$4^{\prime}-6^{\prime \prime}$	5'-0"	5'-6"	6'-0"	$6^{\prime}-6{ }^{\prime \prime}$	7'-0"	7'-6"	8'-0"	9'-0"	10'-0"	11'-0"	12'-0"
$\begin{aligned} & \text { Steel } \\ & 13 \mathrm{ga} . \end{aligned}$	$1^{1 / 2 "}$	4.3	P61513*	U	$\begin{gathered} 669 \\ .03 \end{gathered}$	$\begin{gathered} 655 \\ .07 \end{gathered}$	$\begin{gathered} 456 \\ .10 \end{gathered}$	$\begin{aligned} & 336 \\ & .13 \end{aligned}$	$\begin{gathered} 258 \\ .17 \end{gathered}$	$\begin{gathered} 204 \\ .22 \end{gathered}$	$\begin{aligned} & 166 \\ & .27 \end{aligned}$	$\begin{aligned} & 138 \\ & .33 \end{aligned}$	$\begin{aligned} & 117 \\ & .40 \end{aligned}$	$\begin{aligned} & 100 \\ & .47 \end{aligned}$	$\begin{aligned} & 87 \\ & .55 \end{aligned}$	$\begin{aligned} & 76 \\ & .63 \end{aligned}$	$\begin{aligned} & 67 \\ & .72 \end{aligned}$	$\begin{aligned} & 54 \\ & .92 \end{aligned}$	$\begin{gathered} 44 \\ 1.16 \end{gathered}$	$\begin{gathered} 37 \\ 1.43 \end{gathered}$	$\begin{gathered} 31 \\ 1.68 \end{gathered}$
	(38.1)	(6.4)	A61513	C	$\begin{gathered} 960 \\ .03 \end{gathered}$	$\begin{gathered} 819 \\ .05 \end{gathered}$	$\begin{gathered} 684 \\ .08 \end{gathered}$	$\begin{gathered} 588 \\ .11 \end{gathered}$	$\begin{gathered} 516 \\ .14 \end{gathered}$	$\begin{gathered} 460 \\ .18 \end{gathered}$	$\begin{aligned} & 416 \\ & .22 \end{aligned}$	$\begin{gathered} 380 \\ .26 \end{gathered}$	$\begin{array}{r} 349 \\ .32 \end{array}$	$\begin{gathered} 325 \\ .37 \end{gathered}$	$\begin{aligned} & 303 \\ & .44 \end{aligned}$	$\begin{gathered} 285 \\ .50 \end{gathered}$	$\begin{gathered} 268 \\ .58 \end{gathered}$	$\begin{gathered} 241 \\ .74 \end{gathered}$	$\begin{gathered} 218 \\ .91 \end{gathered}$	$\begin{aligned} & 198 \\ & 1.11 \end{aligned}$	$\begin{aligned} & 182 \\ & 1.32 \end{aligned}$
	2"	4.6	P62013*	U	$\begin{gathered} 1510 \\ .03 \end{gathered}$	$\begin{gathered} 966 \\ .05 \end{gathered}$	$\begin{gathered} 671 \\ .07 \end{gathered}$	$\begin{gathered} 493 \\ .10 \end{gathered}$	$\begin{gathered} 378 \\ .13 \end{gathered}$	$\begin{gathered} 299 \\ .16 \end{gathered}$	$\begin{gathered} 243 \\ .20 \end{gathered}$	$\begin{array}{r} 201 \\ .25 \end{array}$	$\begin{aligned} & 170 \\ & .29 \end{aligned}$	$\begin{aligned} & 145 \\ & .35 \end{aligned}$	$\begin{aligned} & 126 \\ & .40 \end{aligned}$	$\begin{aligned} & 110 \\ & .46 \end{aligned}$	$\begin{aligned} & 97 \\ & .53 \end{aligned}$	$\begin{aligned} & 77 \\ & .68 \end{aligned}$	$\begin{aligned} & 63 \\ & .85 \end{aligned}$	$\begin{gathered} 53 \\ 1.03 \end{gathered}$	$\begin{gathered} 45 \\ 1.25 \end{gathered}$
	(50.8)	(6.8)	A62013	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{gathered} 1442 \\ .02 \end{gathered}$	$\begin{gathered} 1154 \\ .04 \end{gathered}$	$\begin{gathered} 961 \\ .06 \end{gathered}$	$\begin{gathered} 862 \\ .08 \end{gathered}$	$\begin{aligned} & 756 \\ & .10 \end{aligned}$	$\begin{gathered} 673 \\ .13 \end{gathered}$	$\begin{aligned} & 608 \\ & .16 \end{aligned}$	$\begin{aligned} & 555 \\ & .20 \end{aligned}$	$\begin{gathered} 509 \\ .23 \end{gathered}$	$\begin{gathered} 472 \\ .28 \end{gathered}$	$\begin{gathered} 440 \\ .32 \end{gathered}$	$\begin{gathered} 413 \\ .37 \end{gathered}$	$\begin{gathered} 388 \\ .42 \end{gathered}$	$\begin{gathered} 349 \\ .54 \end{gathered}$	$\begin{gathered} 317 \\ .67 \end{gathered}$	$\begin{gathered} 291 \\ .82 \end{gathered}$	$\begin{gathered} 270 \\ .99 \end{gathered}$
$\begin{aligned} & \text { Steel } \\ & 11 \text { ga. } \end{aligned}$	$1^{1 / 2 "}$	5.3	P61511*	U	$\begin{gathered} 986 \\ .03 \end{gathered}$	$\begin{gathered} 739 \\ .06 \end{gathered}$	$\begin{gathered} 515 \\ .09 \end{gathered}$	$\begin{aligned} & 378 \\ & .12 \end{aligned}$	$\begin{gathered} 291 \\ .16 \end{gathered}$	$\begin{gathered} 230 \\ .21 \end{gathered}$	$\begin{aligned} & 188 \\ & .25 \end{aligned}$	$\begin{aligned} & 156 \\ & .31 \end{aligned}$	$\begin{gathered} 131 \\ .37 \end{gathered}$	$\begin{gathered} 112 \\ .43 \end{gathered}$	$\begin{aligned} & 97 \\ & .50 \end{aligned}$	$\begin{aligned} & 85 \\ & .57 \end{aligned}$	$\begin{aligned} & 75 \\ & .65 \end{aligned}$	$\begin{aligned} & 60 \\ & .82 \end{aligned}$	$\begin{gathered} 50 \\ 1.02 \end{gathered}$	$\begin{gathered} 41 \\ 1.25 \end{gathered}$	$\begin{gathered} 35 \\ 1.50 \end{gathered}$
	(38.1)	(7.9)	A61511	C	$\begin{gathered} 1231 \\ .03 \end{gathered}$	$\begin{gathered} 985 \\ .05 \end{gathered}$	$\begin{gathered} 821 \\ .07 \end{gathered}$	$\begin{aligned} & 703 \\ & .10 \end{aligned}$	$\begin{aligned} & 615 \\ & .13 \end{aligned}$	$\begin{gathered} 547 \\ .16 \end{gathered}$	$\begin{aligned} & 492 \\ & .20 \end{aligned}$	$\begin{gathered} 448 \\ .25 \end{gathered}$	$\begin{gathered} 410 \\ .29 \end{gathered}$	$\begin{gathered} 379 \\ .34 \end{gathered}$	$\begin{aligned} & 352 \\ & .40 \end{aligned}$	$\begin{gathered} 328 \\ .46 \end{gathered}$	$\begin{gathered} 308 \\ .52 \end{gathered}$	$\begin{gathered} 274 \\ .66 \end{gathered}$	$\begin{gathered} 246 \\ .81 \end{gathered}$	$\begin{aligned} & 227 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 210 \\ & 1.20 \end{aligned}$
	2"	5.5	P62011*	U	$\begin{gathered} 1937 \\ .03 \end{gathered}$	$\begin{gathered} 1240 \\ .05 \end{gathered}$	$\begin{gathered} 861 \\ .07 \end{gathered}$	$\begin{gathered} 633 \\ .10 \end{gathered}$	$\begin{gathered} 486 \\ .13 \end{gathered}$	$\begin{gathered} 385 \\ .16 \end{gathered}$	$\begin{aligned} & 312 \\ & .20 \end{aligned}$	$\begin{gathered} 259 \\ .24 \end{gathered}$	$\begin{gathered} 218 \\ .29 \end{gathered}$	$\begin{aligned} & 186 \\ & .34 \end{aligned}$	$\begin{aligned} & 161 \\ & .40 \end{aligned}$	$\begin{aligned} & 140 \\ & .46 \end{aligned}$	124	$\begin{aligned} & 99 \\ & .67 \end{aligned}$	$\begin{aligned} & 80 \\ & .83 \end{aligned}$	$\begin{gathered} 67 \\ 1.01 \end{gathered}$	$\begin{gathered} 57 \\ 1.22 \end{gathered}$
	(50.8)	(8.2)	A62011	C	$\begin{gathered} 1881 \\ .02 \end{gathered}$	$\begin{gathered} 1505 \\ .04 \end{gathered}$	$\begin{gathered} 1292 \\ .06 \end{gathered}$	$\begin{gathered} 1109 \\ .08 \end{gathered}$	$\begin{gathered} 971 \\ .10 \end{gathered}$	$\begin{gathered} 865 \\ .13 \end{gathered}$	$\begin{aligned} & 781 \\ & .16 \end{aligned}$	$\begin{aligned} & 712 \\ & .20 \end{aligned}$	$\begin{gathered} 654 \\ .23 \end{gathered}$	$\begin{gathered} 604 \\ .27 \end{gathered}$	$\begin{gathered} 563 \\ .32 \end{gathered}$	$\begin{gathered} 527 \\ .37 \end{gathered}$	$\begin{gathered} 496 \\ .42 \end{gathered}$	$\begin{array}{r} 444 \\ .54 \end{array}$	$\begin{gathered} 403 \\ .67 \end{gathered}$	$\begin{gathered} 389 \\ .81 \end{gathered}$	$\begin{gathered} 341 \\ .98 \end{gathered}$
	$3 "$	6.2	P63011*	U	$\begin{gathered} 3828 \\ .02 \end{gathered}$	$\begin{gathered} 2450 \\ .04 \end{gathered}$	1701 .05	$\begin{gathered} 1250 \\ .07 \end{gathered}$	957 .10	$\begin{aligned} & 757 \\ & .12 \end{aligned}$	$\begin{gathered} 614 \\ .15 \end{gathered}$	507 .18	427 .22	365 .25	315 .29	274 .34	242 .39	192 .49	$\begin{gathered} 156 \\ .61 \end{gathered}$	$\begin{aligned} & 130 \\ & .74 \end{aligned}$	$\begin{aligned} & 108 \\ & 07 \end{aligned}$
	(76.2)	(9.2)	A63011	C	$\begin{gathered} 3448 \\ .02 \end{gathered}$	$\begin{gathered} 2759 \\ .02 \end{gathered}$	$\begin{gathered} 2299 \\ .04 \end{gathered}$	$\begin{gathered} 1971 \\ .05 \end{gathered}$	$\begin{gathered} 1724 \\ .07 \end{gathered}$	$\begin{gathered} 1533 \\ .09 \end{gathered}$	$\begin{gathered} 1405 \\ .11 \end{gathered}$	$\begin{gathered} 1396 \\ .14 \end{gathered}$	$\begin{gathered} 1282 \\ .17 \end{gathered}$	$\begin{gathered} 1185 \\ .20 \end{gathered}$	$\begin{gathered} 1102 \\ .24 \end{gathered}$	$\begin{gathered} 1030 \\ .27 \end{gathered}$	$\begin{gathered} 968 \\ .31 \end{gathered}$	$\begin{gathered} 864 \\ .39 \end{gathered}$	$\begin{aligned} & 781 \\ & .49 \end{aligned}$	$\begin{gathered} 714 \\ .59 \end{gathered}$	$\begin{gathered} 652 \\ .70 \end{gathered}$
Alum. $0.125^{\prime \prime}$	2"	2.1	P620125*	U	$\begin{gathered} 1463 \\ .08 \end{gathered}$	$\begin{gathered} 936 \\ .12 \end{gathered}$	$\begin{aligned} & 650 \\ & .17 \end{aligned}$	$\begin{gathered} 478 \\ .23 \end{gathered}$	$\begin{gathered} 366 \\ .30 \end{gathered}$	$\begin{gathered} 290 \\ .38 \end{gathered}$	$\begin{gathered} 235 \\ .47 \end{gathered}$	194	$\begin{aligned} & 163 \\ & .68 \end{aligned}$	$\begin{gathered} 140 \\ .79 \end{gathered}$	$\begin{aligned} & 120 \\ & .92 \end{aligned}$	$\begin{aligned} & 104 \\ & 1.05 \end{aligned}$	$\begin{gathered} 93 \\ 1.20 \end{gathered}$	$\begin{gathered} 73 \\ 1.52 \end{gathered}$	$\begin{gathered} 60 \\ 1.88 \end{gathered}$	$\begin{gathered} 49 \\ 2.27 \end{gathered}$	$\begin{gathered} 41 \\ 2.70 \end{gathered}$
	(50.8)	(3.1)	A620125	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	$\begin{gathered} 1612 \\ .06 \end{gathered}$	$\begin{gathered} 1290 \\ .09 \end{gathered}$	1075	$\begin{gathered} 921 \\ .18 \end{gathered}$	$\begin{array}{r} 806 \\ .24 \end{array}$	$\begin{aligned} & 716 \\ & .30 \end{aligned}$	$\begin{gathered} 645 \\ .38 \end{gathered}$	$\begin{gathered} 586 \\ .45 \end{gathered}$	$\begin{array}{r} 537 \\ .54 \end{array}$	$\begin{gathered} 496 \\ .63 \end{gathered}$	$\begin{gathered} 461 \\ .74 \end{gathered}$	$\begin{gathered} 430 \\ .84 \end{gathered}$	$\begin{gathered} 403 \\ .96 \end{gathered}$	$\begin{aligned} & 358 \\ & 1.22 \end{aligned}$	$\begin{aligned} & 322 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 293 \\ & 1.82 \end{aligned}$	$\begin{aligned} & 269 \\ & 2.16 \end{aligned}$
Stainless Steel 16 ga .	2"	3.2	P62016S*	U D	$\begin{gathered} 1289 \\ .04 \end{gathered}$	$\begin{gathered} 825 \\ .07 \end{gathered}$	$\begin{gathered} 573 \\ .10 \end{gathered}$	$\begin{array}{r} 421 \\ .13 \end{array}$	322 .17	$\begin{gathered} 255 \\ .22 \end{gathered}$	$\begin{gathered} 206 \\ .27 \end{gathered}$	$\begin{aligned} & 170 \\ & .33 \end{aligned}$	$\begin{gathered} 143 \\ .39 \end{gathered}$	$\begin{gathered} 122 \\ .46 \end{gathered}$	$\begin{gathered} 105 \\ .53 \end{gathered}$	$\begin{aligned} & 91 \\ & .61 \end{aligned}$	$\begin{aligned} & 80 \\ & .69 \end{aligned}$	$\begin{aligned} & 64 \\ & .88 \end{aligned}$	$\begin{gathered} 51 \\ 1.08 \end{gathered}$	$\begin{gathered} 42 \\ 1.30 \end{gathered}$	$\begin{gathered} 35 \\ 1.54 \end{gathered}$
	(50.8)	(4.7)	A62016S	C	$\begin{gathered} 1252 \\ .03 \end{gathered}$	$\begin{gathered} 1002 \\ .05 \end{gathered}$	835 .07	$\begin{aligned} & 715 \\ & .10 \end{aligned}$	626 .13	$\begin{gathered} 556 \\ .17 \end{gathered}$	$\begin{gathered} 501 \\ .21 \end{gathered}$	469 .26	430 .31	397 .37	368 .42	$\begin{gathered} 343 \\ .49 \end{gathered}$	322 .55	286 .70	$\begin{gathered} 257 \\ .86 \end{gathered}$	$\begin{aligned} & 234 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 215 \\ & 1.25 \end{aligned}$

* PERF-O GRIP: To order standard PERF-0 GRIP grating use part number "Pxxxxx".

PERF-O GRIP 2: To order New PERF-0 GRIP 2 grating use part number "Axxxxx". End margins are standard on new PERF-0 GRIP 2 grating 2 -Hole through 6 -Hole plank only ($5^{\prime \prime}$ through $12^{\prime \prime}$ widths). Standard lengths are $10^{\prime}-0^{\prime \prime}$ and $12^{\prime}-0^{\prime \prime}$. Longer lengths of $20^{\prime}-0^{\prime \prime}$ and $24^{\prime}-0^{\prime \prime \prime}$ are available on both PERF-0 GRIP and PERF-0 GRIP 2. Consult factory.

Grating Load Tables

PERF-O GRIP ${ }^{\text {"I }}$ - 10-Hole Plank - 18" Width

Plank Selection/Design Tables
Allowable Loads and Deflections: U=Uniform Load (lb./ft.2) C=Concentrated Load (lb.) $\quad \mathrm{D}=$ Deflection (in.)

Material Gauge	Channel Depth in. (mm)	Weight lb ./lin. ft . (kg/m)	Catalog Number	Span																	
					2'-0"	2'-6"	$3^{\prime}-0^{\prime \prime}$	$3^{\prime}-6{ }^{\prime \prime}$	4'-0"	4'-6"	5'-0"	5'-6"	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-6{ }^{\prime \prime}$	7'-0"	7'-6"	8'-0"	$9^{\prime}-0^{\prime \prime}$	10'-0"	11'-0"	12'-0"
$\begin{aligned} & \text { Steel } \\ & 13 \mathrm{ga.} \end{aligned}$	$\begin{aligned} & 1^{1} / 2^{\prime \prime} \\ & (38.1) \end{aligned}$	$\begin{gathered} 5.7 \\ (8.5) \end{gathered}$	P101513	U	$\begin{array}{r} 714 \\ .04 \end{array}$	457	$\begin{aligned} & 317 \\ & .10 \end{aligned}$	$\begin{gathered} 233 \\ .13 \end{gathered}$	$\begin{gathered} 179 \\ .17 \end{gathered}$	$\begin{aligned} & 142 \\ & .21 \end{aligned}$	116	$\begin{aligned} & 96 \\ & .32 \end{aligned}$	$\begin{aligned} & 82 \\ & .39 \end{aligned}$	$\begin{aligned} & 69 \\ & .45 \end{aligned}$	$\begin{aligned} & 60 \\ & .52 \end{aligned}$	$\begin{aligned} & 52 \\ & .60 \end{aligned}$	$\begin{aligned} & 45 \\ & .68 \end{aligned}$	$\begin{aligned} & 36 \\ & .86 \end{aligned}$	$\begin{gathered} 29 \\ 1.05 \end{gathered}$	$\begin{gathered} 24 \\ 1.27 \end{gathered}$	$\begin{gathered} 21 \\ 1.56 \end{gathered}$
				C	$\begin{gathered} 964 \\ .03 \end{gathered}$	$\begin{aligned} & 771 \\ & .04 \end{aligned}$	$\begin{gathered} 642 \\ .07 \end{gathered}$	$\begin{gathered} 551 \\ .09 \end{gathered}$	$\begin{aligned} & 495 \\ & .12 \end{aligned}$	$\begin{gathered} 481 \\ .17 \end{gathered}$	$\begin{gathered} 434 \\ .21 \end{gathered}$	$\begin{gathered} 397 \\ .26 \end{gathered}$	$\begin{gathered} 366 \\ .31 \end{gathered}$	$\begin{gathered} 337 \\ .36 \end{gathered}$	$\begin{gathered} 314 \\ .42 \end{gathered}$	$\begin{gathered} 293 \\ .48 \end{gathered}$	$\begin{gathered} 274 \\ .55 \end{gathered}$	$\begin{gathered} 243 \\ .69 \end{gathered}$	$\begin{gathered} 220 \\ .85 \end{gathered}$	$\begin{aligned} & 199 \\ & 1.03 \end{aligned}$	$\begin{aligned} & 183 \\ & 1.23 \end{aligned}$
	$\begin{gathered} 2^{\prime \prime} \\ (50.8) \end{gathered}$	$\begin{gathered} 6.0 \\ (8.9) \end{gathered}$	P102013	U	$\begin{gathered} 1072 \\ .03 \end{gathered}$	$\begin{gathered} 686 \\ .05 \end{gathered}$	$\begin{gathered} 476 \\ .07 \end{gathered}$	$\begin{aligned} & 350 \\ & .10 \end{aligned}$	$\begin{gathered} 268 \\ .13 \end{gathered}$	$\begin{gathered} 212 \\ .16 \end{gathered}$	$\begin{aligned} & 173 \\ & .20 \end{aligned}$	$\begin{aligned} & 143 \\ & .24 \end{aligned}$	$\begin{gathered} 121 \\ .29 \end{gathered}$	103	$\begin{aligned} & 90 \\ & .40 \end{aligned}$	$\begin{aligned} & 78 \\ & .46 \end{aligned}$	$\begin{aligned} & 69 \\ & .53 \end{aligned}$	$\begin{aligned} & 55 \\ & .67 \end{aligned}$	$\begin{aligned} & 44 \\ & .82 \end{aligned}$	$\begin{aligned} & 36 \\ & .98 \end{aligned}$	$\begin{gathered} 31 \\ 1.19 \end{gathered}$
				C	$\begin{gathered} 1452 \\ .02 \end{gathered}$	$\begin{gathered} 1162 \\ .03 \end{gathered}$	$\begin{gathered} 968 \\ .05 \end{gathered}$	$\begin{gathered} 830 \\ .06 \end{gathered}$	$\begin{gathered} 726 \\ .09 \end{gathered}$	$\begin{aligned} & 645 \\ & .12 \end{aligned}$	$\begin{aligned} & 581 \\ & .14 \end{aligned}$	$\begin{gathered} 528 \\ .17 \end{gathered}$	$\begin{gathered} 509 \\ .22 \end{gathered}$	$\begin{gathered} 489 \\ .27 \end{gathered}$	$\begin{gathered} 470 \\ .32 \end{gathered}$	$\begin{gathered} 439 \\ .37 \end{gathered}$	$\begin{array}{r} 411 \\ .42 \end{array}$	$\begin{gathered} 366 \\ .53 \end{gathered}$	$\begin{gathered} 329 \\ .65 \end{gathered}$	$\begin{gathered} 299 \\ .79 \end{gathered}$	$\begin{gathered} 274 \\ .94 \end{gathered}$
$\begin{aligned} & \text { Steel } \\ & 11 \mathrm{ga} . \end{aligned}$	$\begin{aligned} & 1^{1} / 2^{\prime \prime} \\ & (38.1) \end{aligned}$	$\begin{gathered} 6.8 \\ (10.1) \end{gathered}$	P101511	U	$\begin{aligned} & 781 \\ & .04 \end{aligned}$	$\begin{gathered} 500 \\ .06 \end{gathered}$	$\begin{gathered} 347 \\ .09 \end{gathered}$	$\begin{gathered} 255 \\ .12 \end{gathered}$	$\begin{aligned} & 196 \\ & .15 \end{aligned}$	$\begin{aligned} & 156 \\ & .19 \end{aligned}$	127 .24	105 .29	89 .34	76 .40	66 .47	$\begin{aligned} & 58 \\ & .53 \end{aligned}$	$\begin{aligned} & 52 \\ & .61 \end{aligned}$	$\begin{aligned} & 41 \\ & .77 \end{aligned}$	$\begin{aligned} & 34 \\ & .96 \end{aligned}$	$\begin{gathered} 29 \\ 1.20 \end{gathered}$	$\begin{gathered} 25 \\ 1.45 \end{gathered}$
				C	$\begin{gathered} 1257 \\ .03 \end{gathered}$	$\begin{gathered} 1006 \\ .05 \end{gathered}$	$\begin{gathered} 838 \\ .07 \end{gathered}$	$\begin{aligned} & 718 \\ & .09 \end{aligned}$	$\begin{aligned} & 629 \\ & .12 \end{aligned}$	$\begin{gathered} 559 \\ .15 \end{gathered}$	$\begin{aligned} & 503 \\ & .19 \end{aligned}$	$\begin{gathered} 457 \\ .23 \end{gathered}$	$\begin{gathered} 419 \\ .27 \end{gathered}$	$\begin{array}{r} 387 \\ .32 \end{array}$	$\begin{gathered} 359 \\ .37 \end{gathered}$	$\begin{aligned} & 335 \\ & .43 \end{aligned}$	$\begin{gathered} 314 \\ .49 \end{gathered}$	$\begin{aligned} & 279 \\ & .62 \end{aligned}$	$\begin{gathered} 253 \\ .76 \end{gathered}$	$\begin{gathered} 234 \\ .94 \end{gathered}$	$\begin{aligned} & 219 \\ & 1.14 \end{aligned}$
	$\begin{gathered} 2^{\prime \prime} \\ (50.8) \end{gathered}$	$\begin{gathered} 7.1 \\ (10.5) \end{gathered}$	P102011	U	$\begin{gathered} 1250 \\ .03 \end{gathered}$	$\begin{gathered} 800 \\ .05 \end{gathered}$	$\begin{gathered} 555 \\ .07 \end{gathered}$	$\begin{aligned} & 408 \\ & .09 \end{aligned}$	$\begin{array}{r} 314 \\ .12 \end{array}$	249	$\begin{array}{r} 201 \\ .18 \end{array}$	167	$\begin{gathered} 141 \\ .26 \end{gathered}$	121	$\begin{gathered} 104 \\ 25 \end{gathered}$	$\begin{aligned} & 91 \\ & .41 \end{aligned}$	$\begin{aligned} & 80 \\ & .46 \end{aligned}$	$\begin{aligned} & 64 \\ & .59 \end{aligned}$	$\begin{aligned} & 53 \\ & .74 \end{aligned}$	$\begin{aligned} & 44 \\ & .91 \end{aligned}$	$\begin{gathered} 37 \\ 1.08 \end{gathered}$
				C	$\begin{gathered} 1924 \\ .02 \end{gathered}$	$\begin{gathered} 1539 \\ .04 \end{gathered}$	$\begin{gathered} 1283 \\ .05 \end{gathered}$	$\begin{gathered} 1099 \\ .07 \end{gathered}$	$\begin{gathered} 962 \\ .09 \end{gathered}$	$\begin{aligned} & 855 \\ & .12 \end{aligned}$	$\begin{aligned} & 770 \\ & .14 \end{aligned}$	$\begin{aligned} & 700 \\ & .17 \end{aligned}$	$\begin{gathered} 641 \\ .21 \end{gathered}$	$\begin{gathered} 592 \\ .24 \end{gathered}$	$\begin{gathered} 550 \\ .28 \end{gathered}$	$\begin{gathered} 514 \\ .33 \end{gathered}$	$\begin{gathered} 484 \\ .37 \end{gathered}$	$\begin{gathered} 434 \\ .48 \end{gathered}$	$\begin{gathered} 395 \\ .59 \end{gathered}$	$\begin{gathered} 363 \\ .73 \end{gathered}$	337
	$\begin{gathered} 3^{\prime \prime} \\ (76.2) \end{gathered}$	$\begin{gathered} 7.9 \\ (11.7) \end{gathered}$	P103011	U	$\begin{gathered} 2675 \\ .02 \end{gathered}$	$\begin{gathered} 1712 \\ .04 \end{gathered}$	$\begin{gathered} 1189 \\ .05 \end{gathered}$	$\begin{gathered} 873 \\ .07 \end{gathered}$	$\begin{gathered} 669 \\ .09 \end{gathered}$	$\begin{gathered} 528 \\ .11 \end{gathered}$	$\begin{gathered} 428 \\ .14 \end{gathered}$	$\begin{gathered} 354 \\ .17 \end{gathered}$	$\begin{array}{r} 297 \\ .20 \end{array}$	$\begin{gathered} 254 \\ .24 \end{gathered}$	$\begin{gathered} 219 \\ .28 \end{gathered}$	$\begin{aligned} & 190 \\ & .31 \end{aligned}$	$\begin{aligned} & 167 \\ & .36 \end{aligned}$	$\begin{aligned} & 132 \\ & .45 \end{aligned}$	$\begin{aligned} & 107 \\ & .56 \end{aligned}$	89	$\begin{aligned} & 74 \\ & .81 \end{aligned}$
				C	$\begin{gathered} 3531 \\ .01 \end{gathered}$	$\begin{gathered} 2825 \\ .02 \end{gathered}$	$\begin{gathered} 2354 \\ .03 \end{gathered}$	$\begin{gathered} 2018 \\ .04 \end{gathered}$	$\begin{gathered} 1766 \\ .06 \end{gathered}$	$\begin{gathered} 1569 \\ .08 \end{gathered}$	$\begin{gathered} 1412 \\ .10 \end{gathered}$	$\begin{gathered} 1284 \\ .12 \end{gathered}$	$\begin{gathered} 1177 \\ .14 \end{gathered}$	$\begin{gathered} 1141 \\ .20 \end{gathered}$	$\begin{gathered} 1106 \\ .23 \end{gathered}$	$\begin{gathered} 1070 \\ .25 \end{gathered}$	$\begin{gathered} 1003 \\ .29 \end{gathered}$	$\begin{gathered} 892 \\ .36 \end{gathered}$	$\begin{gathered} 802 \\ .45 \end{gathered}$	$\begin{gathered} 730 \\ .54 \end{gathered}$	$\begin{gathered} 669 \\ .65 \end{gathered}$
$\begin{aligned} & \text { Alum. } \\ & 0.125 " \end{aligned}$	$\begin{gathered} 2^{\prime \prime} \\ (50.8) \end{gathered}$	$\begin{gathered} 2.8 \\ (4.1) \end{gathered}$	P1020125	U	$\begin{gathered} 992 \\ .07 \end{gathered}$	$\begin{aligned} & 635 \\ & .10 \end{aligned}$	$\begin{gathered} 441 \\ .16 \end{gathered}$	$\begin{gathered} 324 \\ .21 \end{gathered}$	$\begin{array}{r} 248 \\ .28 \end{array}$	$\begin{aligned} & 196 \\ & .35 \end{aligned}$	$\begin{aligned} & 158 \\ & .44 \end{aligned}$	$\begin{gathered} 131 \\ .53 \end{gathered}$	$\begin{gathered} 110 \\ .63 \end{gathered}$	94 .74	$\begin{aligned} & 81 \\ & 06 \end{aligned}$	$\begin{aligned} & 70 \\ & .98 \end{aligned}$	$\begin{gathered} 62 \\ 1.12 \end{gathered}$	$\begin{gathered} 49 \\ 1.42 \end{gathered}$	$\begin{gathered} 40 \\ 1.75 \end{gathered}$	$\begin{gathered} 33 \\ 2.11 \end{gathered}$	$\begin{gathered} 27 \\ 2.52 \end{gathered}$
				C	$\begin{gathered} 1652 \\ .05 \end{gathered}$	$\begin{gathered} 1322 \\ .08 \end{gathered}$	$\begin{gathered} 1102 \\ .13 \end{gathered}$	$\begin{gathered} 944 \\ .17 \end{gathered}$	$\begin{gathered} 826 \\ .22 \end{gathered}$	$\begin{aligned} & 734 \\ & .28 \end{aligned}$	$\begin{gathered} 661 \\ .35 \end{gathered}$	$\begin{gathered} 601 \\ .42 \end{gathered}$	$\begin{gathered} 551 \\ .50 \end{gathered}$	$\begin{gathered} 508 \\ .59 \end{gathered}$	$\begin{gathered} 472 \\ .69 \end{gathered}$	$\begin{aligned} & 441 \\ & .79 \end{aligned}$	$\begin{gathered} 413 \\ .89 \end{gathered}$	$\begin{aligned} & 367 \\ & 1.13 \end{aligned}$	$\begin{aligned} & 330 \\ & 1.40 \end{aligned}$	$\begin{aligned} & 300 \\ & 1.69 \end{aligned}$	$\begin{aligned} & 275 \\ & 2.01 \end{aligned}$

PERF-0 GRIP: To order standard PERF-0 GRIP grating use part number "Pxxxxx".
Standard lengths are $10^{\prime}-0^{\prime \prime}$ and $12^{\prime}-0^{\prime \prime}$. Longer lengths of $20^{\prime}-0^{\prime \prime}$ and $24^{\prime}-0^{\prime \prime}$ are available. Consult factory.

PERF-O GRIP ${ }^{m "}$ - 13-Hole Plank - 24" Width

Plank Selection/Design Tables

Allowable Loads and Deflections: U=Uniform Load (lb./ft.2) C=Concentrated Load (lb.) $\quad \mathrm{D}=$ Deflection (in.)

Material Gauge	Channel Depth in. (mm)	Weight lb ./lin. ft . (kg/m)	Catalog Number	Span																	
					2'-0"	2'-6"	3'-0"	3'-6"	4'-0"	$4^{\prime}-6^{\prime \prime}$	5'-0"	$5^{\prime}-6^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-6^{\prime \prime}$	7'-0"	7'-6"	8'-0"	$9^{\prime}-0^{\prime \prime}$	10'-0"	11'-0"	12'-0"
$\begin{aligned} & \text { Steel } \\ & 11 \text { ga. } \end{aligned}$	2 "	8.9	P132011	U	$\begin{gathered} 1094 \\ .03 \end{gathered}$	$\begin{aligned} & 700 \\ & .05 \end{aligned}$	$\begin{gathered} 486 \\ .06 \end{gathered}$	$\begin{array}{r} 357 \\ .09 \end{array}$	$\begin{gathered} 273 \\ .12 \end{gathered}$	$\begin{gathered} 216 \\ .15 \end{gathered}$	$\begin{aligned} & 175 \\ & .18 \end{aligned}$	$\begin{aligned} & 145 \\ & .22 \end{aligned}$	$\begin{gathered} 123 \\ .26 \end{gathered}$	$\begin{gathered} 105 \\ .31 \end{gathered}$	$\begin{aligned} & 91 \\ & .36 \end{aligned}$	$\begin{aligned} & 79 \\ & 41 \end{aligned}$	$\begin{aligned} & 70 \\ & .47 \end{aligned}$	$\begin{aligned} & 56 \\ & .60 \end{aligned}$	$\begin{aligned} & 45 \\ & .75 \end{aligned}$	$\begin{aligned} & 38 \\ & .92 \end{aligned}$	$\begin{gathered} 33 \\ 1.13 \end{gathered}$
	(50.8)	(13.2)		C	$\begin{gathered} 2092 \\ .02 \end{gathered}$	$\begin{gathered} 1674 \\ .03 \end{gathered}$	$\begin{gathered} 1395 \\ .05 \end{gathered}$	$\begin{gathered} 1196 \\ .06 \end{gathered}$	$\begin{gathered} 1046 \\ .09 \end{gathered}$	$\begin{aligned} & 930 \\ & .11 \end{aligned}$	$\begin{aligned} & 837 \\ & .14 \end{aligned}$	$\begin{aligned} & 761 \\ & .17 \end{aligned}$	$\begin{gathered} 697 \\ .20 \end{gathered}$	$\begin{gathered} 644 \\ .23 \end{gathered}$	$\begin{gathered} 598 \\ .27 \end{gathered}$	$\begin{array}{r} 558 \\ .31 \end{array}$	$\begin{gathered} 540 \\ .37 \end{gathered}$	$\begin{array}{r} 504 \\ .49 \end{array}$	$\begin{gathered} 459 \\ .61 \end{gathered}$	$\begin{gathered} 423 \\ .74 \end{gathered}$	$\begin{gathered} 393 \\ .90 \end{gathered}$
	$\begin{gathered} 3^{\prime \prime} \\ (76.2) \end{gathered}$	$\begin{gathered} 9.8 \\ (14.5) \end{gathered}$	P133011	U	$\begin{gathered} 1971 \\ .02 \end{gathered}$	$\begin{gathered} 1261 \\ .03 \end{gathered}$	$\begin{gathered} 876 \\ .04 \end{gathered}$	$\begin{gathered} 644 \\ .06 \end{gathered}$	$\begin{gathered} 493 \\ .08 \end{gathered}$	$\begin{gathered} 389 \\ .10 \end{gathered}$	$\begin{aligned} & 315 \\ & .12 \end{aligned}$	$\begin{gathered} 261 \\ .15 \end{gathered}$	$\begin{gathered} 219 \\ .18 \end{gathered}$	$\begin{gathered} 187 \\ .21 \end{gathered}$	$\begin{aligned} & 161 \\ & .24 \end{aligned}$	$\begin{gathered} 141 \\ .28 \end{gathered}$	$\begin{aligned} & 124 \\ & .32 \end{aligned}$	$\begin{aligned} & 99 \\ & .40 \end{aligned}$	$\begin{aligned} & 80 \\ & .50 \end{aligned}$	$\begin{aligned} & 67 \\ & .61 \end{aligned}$	$\begin{aligned} & 57 \\ & .73 \end{aligned}$
				C	$\begin{gathered} 3792 \\ .01 \end{gathered}$	3033	$\begin{gathered} 2528 \\ .03 \end{gathered}$	2167	$\begin{gathered} 1896 \\ .05 \end{gathered}$	$\begin{gathered} 1685 \\ .07 \end{gathered}$	$\begin{gathered} 1517 \\ .09 \end{gathered}$	$\begin{gathered} 1379 \\ .10 \end{gathered}$	$\begin{gathered} 1264 \\ .12 \end{gathered}$	$\begin{gathered} 1167 \\ .15 \end{gathered}$	$\begin{gathered} 1083 \\ .17 \end{gathered}$	$\begin{gathered} 1011 \\ .19 \end{gathered}$	$\begin{aligned} & 948 \\ & .22 \end{aligned}$	$\begin{array}{r} 843 \\ .30 \end{array}$	$\begin{aligned} & 758 \\ & .38 \end{aligned}$	689	$\begin{aligned} & 632 \\ & .54 \end{aligned}$

PERF-0 GRIP: To order standard PERF-0 GRIP grating use part number "Pxxxxx".
Standard lengths are $10^{\prime}-0^{\prime \prime}$ and $12^{\prime}-0^{\prime \prime}$. Longer lengths of $20^{\prime}-0^{\prime \prime}$ and $24^{\prime}-0^{\prime \prime}$ are available. Consult factory.

PERF-O GRIP ${ }^{\text {m" }}$ - 16-Hole Plank - 30" Width

Plank Selection/Design Tables
Allowable Loads and Deflections: U=Uniform Load (lb./ft.2) C=Concentrated Load (lb.) $\quad \mathrm{D}=\mathrm{Deflection}$ (in.)

Material Gauge	Channel Depth in. (mm)	Weight lb ./lin. ft. (kg/m)	Catalog Number	Span																	
					2'-0"	2'-6"	$3^{\prime}-0^{\prime \prime}$	$3^{\prime}-6{ }^{\prime \prime}$	4'-0"	$4^{\prime}-6^{\prime \prime}$	5'0'0	$5^{\prime}-6^{\prime \prime}$	6'-0'	$6^{\prime}-6^{\prime \prime}$	7'-0'	7'-6"	8'-0"	9'-0"	10'-0"	11'-0"	12'-0"
$\begin{aligned} & \text { Steel } \\ & 11 \mathrm{ga.} \end{aligned}$	2"	11.8	P162011	U	$\begin{gathered} 956 \\ .02 \end{gathered}$	$\begin{gathered} 612 \\ .03 \end{gathered}$	$\begin{gathered} 425 \\ .04 \end{gathered}$	$\begin{gathered} 312 \\ .05 \end{gathered}$	$\begin{array}{r} 239 \\ .07 \end{array}$	$\begin{aligned} & 189 \\ & .09 \end{aligned}$	$\begin{aligned} & 153 \\ & .11 \end{aligned}$	$\begin{aligned} & 126 \\ & .13 \end{aligned}$	$\begin{aligned} & 106 \\ & .16 \end{aligned}$	$\begin{aligned} & 91 \\ & .18 \end{aligned}$	$\begin{aligned} & 77 \\ & .21 \end{aligned}$	$\begin{aligned} & 68 \\ & .24 \end{aligned}$	$\begin{aligned} & 60 \\ & .28 \end{aligned}$	$\begin{aligned} & 47 \\ & .35 \end{aligned}$	$\begin{aligned} & 38 \\ & .43 \end{aligned}$	$\begin{aligned} & 32 \\ & .52 \end{aligned}$	$\begin{aligned} & 27 \\ & .62 \end{aligned}$
	(50.8)	(17.5)		C	$\begin{gathered} 2564 \\ .01 \end{gathered}$	$\begin{gathered} 2051 \\ .02 \end{gathered}$	$\begin{gathered} 1709 \\ .03 \end{gathered}$	$\begin{gathered} 1465 \\ .04 \end{gathered}$	$\begin{gathered} 1282 \\ .06 \end{gathered}$	$\begin{gathered} 1140 \\ .07 \end{gathered}$	$\begin{gathered} 1026 \\ .09 \end{gathered}$	$\begin{gathered} 932 \\ .10 \end{gathered}$	$\begin{aligned} & 855 \\ & .12 \end{aligned}$	$\begin{aligned} & 789 \\ & .15 \end{aligned}$	$\begin{aligned} & 733 \\ & .17 \end{aligned}$	$\begin{array}{r} 684 \\ .20 \end{array}$	$\begin{gathered} 641 \\ .22 \end{gathered}$	$\begin{aligned} & 570 \\ & , 28 \end{aligned}$	$\begin{gathered} 513 \\ .35 \end{gathered}$	$\begin{gathered} 466 \\ .42 \end{gathered}$	$\begin{array}{r} 427 \\ .50 \end{array}$
	$3 "$	12.7	P163011	U	$\begin{gathered} 1413 \\ .02 \end{gathered}$	$\begin{gathered} 904 \\ .03 \end{gathered}$	$\begin{gathered} 628 \\ .04 \end{gathered}$	$\begin{gathered} 461 \\ .06 \end{gathered}$	$\begin{array}{r} 353 \\ .08 \end{array}$	$\begin{array}{r} 279 \\ .10 \end{array}$	$\begin{array}{r} 226 \\ .12 \end{array}$	$\begin{gathered} 187 \\ .14 \end{gathered}$	$\begin{aligned} & 157 \\ & .17 \end{aligned}$	$\begin{aligned} & 134 \\ & .20 \end{aligned}$	$\begin{gathered} 116 \\ .23 \end{gathered}$	$\begin{gathered} 100 \\ .26 \end{gathered}$	$\begin{aligned} & 89 \\ & .30 \end{aligned}$	$\begin{aligned} & 70 \\ & .38 \end{aligned}$	$\begin{aligned} & 57 \\ & .47 \end{aligned}$	$\begin{aligned} & 46 \\ & .57 \end{aligned}$	$\begin{aligned} & 39 \\ & .67 \end{aligned}$
	(76.2)	(18.9)		C	$\begin{gathered} 3802 \\ .01 \end{gathered}$	$\begin{gathered} 3041 \\ .02 \end{gathered}$	$\begin{gathered} 2534 \\ .03 \end{gathered}$	$\begin{gathered} 2172 \\ .04 \end{gathered}$	$\begin{gathered} 1901 \\ .05 \end{gathered}$	$\begin{gathered} 1690 \\ .07 \end{gathered}$	$\begin{gathered} 1521 \\ .09 \end{gathered}$	$\begin{gathered} 1382 \\ .10 \end{gathered}$	$\begin{gathered} 1267 \\ .12 \end{gathered}$	$\begin{gathered} 1170 \\ .14 \end{gathered}$	1086	$\begin{gathered} 1014 \\ .19 \end{gathered}$	$\begin{gathered} 950 \\ .22 \end{gathered}$	$\begin{gathered} 845 \\ .28 \end{gathered}$	$\begin{array}{r} 760 \\ .34 \end{array}$	$\begin{gathered} 691 \\ .41 \end{gathered}$	$\begin{gathered} 634 \\ .53 \end{gathered}$
	$\begin{gathered} 4^{\prime \prime} \\ (101.6) \end{gathered}$	$\begin{aligned} & 13.5 \\ & (20.1) \end{aligned}$	P164011	U	$\begin{gathered} 2240 \\ .01 \end{gathered}$	$\begin{gathered} 1434 \\ .02 \end{gathered}$	$\begin{gathered} 996 \\ .03 \end{gathered}$	$\begin{gathered} 731 \\ .04 \end{gathered}$	$\begin{gathered} 560 \\ .06 \end{gathered}$	$\begin{array}{r} 443 \\ .07 \end{array}$	$\begin{gathered} 358 \\ .09 \end{gathered}$	$\begin{gathered} 296 \\ .11 \end{gathered}$	$\begin{gathered} 249 \\ .13 \end{gathered}$	$\begin{gathered} 212 \\ .15 \end{gathered}$	$\begin{aligned} & 183 \\ & .17 \end{aligned}$	$\begin{aligned} & 159 \\ & .20 \end{aligned}$	$\begin{gathered} 140 \\ .23 \end{gathered}$	$\begin{aligned} & 111 \\ & .29 \end{aligned}$	$\begin{aligned} & 91 \\ & .36 \end{aligned}$	$\begin{aligned} & 75 \\ & .44 \end{aligned}$	$\begin{aligned} & 64 \\ & .52 \end{aligned}$
				C	$\begin{gathered} 5838 \\ .01 \end{gathered}$	$\begin{gathered} 4670 \\ .02 \end{gathered}$	$\begin{gathered} 3892 \\ .02 \end{gathered}$	$\begin{gathered} 3336 \\ .03 \end{gathered}$	$\begin{gathered} 2919 \\ .04 \end{gathered}$	$\begin{gathered} 2595 \\ .05 \end{gathered}$	2335	$\begin{gathered} 2123 \\ .08 \end{gathered}$	$\begin{gathered} 1946 \\ .09 \end{gathered}$	$\begin{gathered} 1796 \\ .11 \end{gathered}$	$\begin{gathered} 1668 \\ .13 \end{gathered}$	$\begin{gathered} 1557 \\ .15 \end{gathered}$	$\begin{gathered} 1459 \\ .17 \end{gathered}$	$\begin{gathered} 1297 \\ .21 \end{gathered}$	$\begin{gathered} 1168 \\ .26 \end{gathered}$	$\begin{gathered} 1061 \\ .32 \end{gathered}$	$\begin{gathered} 973 \\ .38 \end{gathered}$

PERF-0 GRIP: To order standard PERF-0 GRIP grating use part number "Pxxxxx".
Standard lengths are $10^{\prime}-0^{\prime \prime}$ and $12^{\prime}-0^{\prime \prime}$. Longer lengths of $20^{\prime}-0^{\prime \prime}$ and $24^{\prime}-0^{\prime \prime}$ are available. Consult factory.

PERF-O GRIP ${ }^{\text {m" }}$ - Walkway - 24", 30" \& 36" Widths

PERF-O-GRIP

Walkway Selection/Design Tables (Note: Consult factory for data on 36 " width)
Allowable Loads and Deflections: U=Uniform Load (lb./ft.²) C= Concentrated Load (lb.) $\quad \mathrm{D}=$ Deflection (in.)

Material Gauge	Channel Depth in. (mm)	Weight lb ./lin. ft . (kg/m)	Catalog Number	Span																	
					2'-0"	2'-6"	3'-0"	$3^{\prime}-6{ }^{\prime \prime}$	4'-0"	$4^{\prime}-6{ }^{\prime \prime}$	5'0"	$5^{\prime}-6^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-6{ }^{\prime \prime}$	7'-0"	7'-6"	8'-0"	$9^{\prime}-0^{\prime \prime}$	10'-0"	11'-0"	12'-0"
Steel 11 ga.	$5 "$	11.8		U	$\begin{gathered} 5751 \\ .02 \end{gathered}$	$\begin{gathered} 3681 \\ .02 \end{gathered}$	$\begin{gathered} 2556 \\ .04 \end{gathered}$	$\begin{gathered} 1878 \\ .05 \end{gathered}$	$\begin{gathered} 1438 \\ .06 \end{gathered}$	$\begin{gathered} 1136 \\ .08 \end{gathered}$	$\begin{gathered} 920 \\ .10 \end{gathered}$	$\begin{aligned} & 760 \\ & .12 \end{aligned}$	$\begin{aligned} & 639 \\ & .14 \end{aligned}$	$\begin{gathered} 544 \\ .16 \end{gathered}$	$\begin{aligned} & 469 \\ & .19 \end{aligned}$	$\begin{array}{r} 409 \\ .22 \end{array}$	$\begin{gathered} 359 \\ .25 \end{gathered}$	$\begin{gathered} 284 \\ .31 \end{gathered}$	$\begin{gathered} 230 \\ .39 \end{gathered}$	$\begin{aligned} & 190 \\ & .47 \end{aligned}$	$\begin{gathered} 160 \\ .56 \end{gathered}$
24 " wide (609.6)	(127.0)	(17.5)	35011W	C	$\begin{gathered} 9504 \\ .01 \end{gathered}$	$\begin{gathered} 7603 \\ .01 \end{gathered}$	$\begin{gathered} 6336 \\ .02 \end{gathered}$	$\begin{gathered} 5431 \\ .03 \end{gathered}$	$\begin{gathered} 4752 \\ .04 \end{gathered}$	$\begin{gathered} 4224 \\ .05 \end{gathered}$	$\begin{gathered} 3802 \\ .06 \end{gathered}$	$\begin{gathered} 3456 \\ .07 \end{gathered}$	$\begin{gathered} 3168 \\ .08 \end{gathered}$	$\begin{gathered} 2924 \\ .10 \end{gathered}$	$\begin{gathered} 2715 \\ .11 \end{gathered}$	$\begin{gathered} 2534 \\ .13 \end{gathered}$	$\begin{gathered} 2376 \\ .15 \end{gathered}$	$\begin{gathered} 2112 \\ .19 \end{gathered}$	$\begin{gathered} 1901 \\ .23 \end{gathered}$	$\begin{gathered} 1728 \\ .28 \end{gathered}$	$\begin{gathered} 1584 \\ .34 \end{gathered}$
Steel 11 ga.	$5 "$	13.6	P165011W	U	$\begin{gathered} 3868 \\ .01 \end{gathered}$	$\begin{gathered} 2475 \\ .02 \end{gathered}$	$\begin{gathered} 1719 \\ .03 \end{gathered}$	$\begin{gathered} 1263 \\ .04 \end{gathered}$	$\begin{gathered} 967 \\ .05 \end{gathered}$	$\begin{gathered} 764 \\ .06 \end{gathered}$	$\begin{aligned} & 619 \\ & .08 \end{aligned}$	$\begin{aligned} & 511 \\ & .10 \end{aligned}$	$\begin{array}{r} 430 \\ .12 \end{array}$	$\begin{array}{r} 366 \\ .13 \end{array}$	$\begin{gathered} 316 \\ .16 \end{gathered}$	$\begin{gathered} 275 \\ .18 \end{gathered}$	$\begin{gathered} 242 \\ .20 \end{gathered}$	$\begin{gathered} 191 \\ .26 \end{gathered}$	$\begin{aligned} & 155 \\ & .32 \end{aligned}$	$\begin{aligned} & 128 \\ & .39 \end{aligned}$	$\begin{gathered} 107 \\ .46 \end{gathered}$
$30^{\prime \prime}$ wide (762.0)	(127.0)	(20.2)	P165011W	C	$\begin{gathered} 9534 \\ .00 \end{gathered}$	$\begin{gathered} 7627 \\ .01 \end{gathered}$	$\begin{gathered} 6356 \\ .02 \end{gathered}$	$\begin{gathered} 5448 \\ .03 \end{gathered}$	$\begin{gathered} 4767 \\ .04 \end{gathered}$	$\begin{gathered} 4237 \\ .05 \end{gathered}$	$\begin{gathered} 3813 \\ .06 \end{gathered}$	$\begin{gathered} 3467 \\ .07 \end{gathered}$	$\begin{gathered} 3178 \\ .08 \end{gathered}$	$\begin{gathered} 2933 \\ .10 \end{gathered}$	$\begin{gathered} 2724 \\ .11 \end{gathered}$	$\begin{gathered} 2542 \\ .13 \end{gathered}$	$\begin{gathered} 2383 \\ .15 \end{gathered}$	$\begin{gathered} 2119 \\ .19 \end{gathered}$	$\begin{gathered} 1907 \\ .23 \end{gathered}$	$\begin{gathered} 1733 \\ .28 \end{gathered}$	$\begin{gathered} 1589 \\ .33 \end{gathered}$

PERF-0 GRIP: To order standard PERF-0 GRIP grating use part number "Pxxxxx".
Standard lengths are $10^{\prime}-0^{\prime \prime}$ and $12^{\prime}-0^{\prime \prime}$. Longer lengths of $20^{\prime}-0^{\prime \prime}$ and $24^{\prime}-0^{\prime \prime}$ are available. Consult factory.

PERF-O GRIP ${ }^{m T 1}$ Bolt Washer Seat

** Plank carriage bolt lengths $=$ Side Channel Height $+1^{\prime \prime}$ Walkway carriage bolt $={ }^{5} / 16^{\prime \prime}-18 \times 2^{\prime \prime}$

Bolt Washer Seat (P Bolt Seat)		
UPC Number	Catalog Number	Wt./Ea.
66251626616	PBOLTSEAT	0.10

Field drilling is required.
PERF-0 GRIP Bolt Seats help provide a secure anchor of the grating to structural supports. The standard bolt seat features oblong holes specifically designed to help ensure a vertical anchor (with a $3 / 8$ " bolt) even if the hole is off concentrically by as much as $1 / 4^{\prime \prime}$. Hardware is not provided.

Assembly

1. Align PERF-O GRIP planks on I-Beam or other anchoring cross-member.
2. Mark the I-Beam for drilling purposes under the PERF-O GRIP hole nearest the end. Drill a pilot hole.
3. Remove PERF-O GRIP plank and drill a finish hole.
4. Replace PERF-O GRIP plank to its original position. Place bolt seat in the PERF-0-GRIP hole which is now lined up with the drilled hole.
5. Run the carriage bolt through the bolt seat, PERF-O GRIP and I-Beam, and tighten with washer and nut until secure.
6. Test for movement or slippage. If PERF-O GRIP planks are not secure, check fastening system for loose or missing parts. Repeat steps 1 thru 5.

Note: Do not walk on PERF-0 GRIP planks if they are not secure. Serious injury could result.

Welding

A common method of fastening safety grating is welding. It is recommended that all B-Line Safety Grating products be fillet welded per AWS D1.3. For more information, consult Technical Services.

PERF-O GRIP ${ }^{\text {Tw }}$ J-Clip

PERF-O-GRIP J-Clips fasten the grating securely to the supporting steel without drilling holes.
Standard finish is galvanized.
Hardware is not provided.

Part Number Includes
(1) J-Clip \& (1) P Bolt Seat

Order Separately

(1) $3 / 88^{\prime \prime}-16$ Carriage Bolt **
(1) $3 / 8^{\prime \prime}$ Flat Washer
(1) $3 / 8^{\prime \prime}-16$ Hex Nut

** Plank carriage bolt lengths $=$ Side Channel Height +1 " Walkway carriage bolt $=5 / 16^{\prime \prime}-18 \times 2^{\prime \prime}$

Seated J Clip		
UPC Number	Catalog Number	Wt./Ea.
78205153667	JCLIP	0.30

Assembly

1. Align PERF-O GRIP planks on I-Beam or other anchoring cross-member.
2. Place bolt seat on center hole of PERF-O-GRIP nearest the overhanging end.
3. Align J-Clip below PERF-O-GRIP plank so that the carriage bolt can slide through. Make sure the lower lip of the J-Clip reaches well into the I-Beam.
4. Run the carriage bolt through the bolt seat to the J-Clip and tighten securely with the washer and nut.
5. Test for movement or slippage. If PERF-O GRIP planks are not secure, check fastening system for loose or missing parts. Repeat steps 1 thru 4.

Note: Do not walk on PERF-O GRIP planks if they are not secure. Serious injury could result.

Welding

A common method of fastening safety grating is welding. It is recommended that all B-Line Safety Grating products be fillet welded per AWS D1.3. For more information, consult Technical Services.

Accessories

PERF-O GRIP ${ }^{\text {TM }}$ Mid Support Clip with Hardware

Part Number Includes

(1) Clip \& (2) Set Screws

Mid Support Clip (with hardware)		
UPC Number	Catalog Number	Wt./Ea.
$\mathbf{6 6 2 5 1 6 3 9 3 8 6}$	MSCLIP	0.50

PERF-O-GRIP mid support clips can be used at midspan to increase load carrying capacities of individual channels by fastening several planks together to form an integral section. Mid support clip is manufactured from galvanized steel and includes two set screws.

Assembly

1. Align PERF-O GRIP planks on I-Beam or other anchoring cross-member.
2. Place clip around the bottom flanges of the PERF-O GRIPS planks.
3. Slide to the required location.
4. Tighten the set screws.
5. Test for movement or slippage. If PERF-O GRIP planks are not secure, check fastening system for loose or missing parts. Repeat steps 1 thru 4 as required.

Note: Do not walk on PERF-O GRIP planks if they are not secure. Serious injury could result.

Welding

A common method of fastening safety grating is welding. It is recommended that all B-Line Safety Grating products be fillet welded per AWS D1.3. For more information, consult Technical Services.

PERF-O GRIP ${ }^{\text {T" }}$ Splice Plate Kits

POG-ES-10 shown

Surface Splice Plate Kits

As width increases, grating surface performance becomes more critical. Thus, for PERF-O GRIP product widths greater than $12^{\prime \prime}$, use of the grating surface splice kit is recommended to mechanically join butt ends of plank sections.

- POG-ES-10 (for 18" wide plank) \& POG-ES-13 (for 24 " wide plank) includes six (6) each of hardware shown below.
- POG-ES-16 (for 30" wide plank) \& POG-ES-20 (for 36 " wide plank) includes eight (8) each of hardware shown below.
- Hardware included: ${ }^{3} / 8^{\prime \prime} \times 1$ " carriage bolts, ${ }^{3} / 8^{\prime \prime}$ flat washers and bolt seats.

POG-ES-20

POG-WS-30

Walkway Splice Plate Kits
Walkway Splice Plates provide continuity when multiple lengths of PERF-O GRIP are desired. Connections are reinforced with the addition of splice plates attached to side channels.

- POG-WS-30 for 24 ", $30^{\prime \prime}$ and $36^{\prime \prime}$ wide walkway.
- Each Kit includes: Two (2) splice plates and thirty-two (32) each of the following hardware: $1^{1 / 2^{\prime \prime} x}$ $1^{1} / 4^{\prime \prime}$ hex bolts, ${ }^{1} / 2^{\prime \prime}-13$ hex nuts and ${ }^{1} / 2^{\prime \prime}$ flat washers.

Stair Treads \& Carrier Plates

PERF-O GRIP ${ }^{\text {m" }}$ Stair Treads

Specify original PERF-O GRIP or PERF-O GRIP 2 stair treads. All treads have welded ends for attachment to stringers.

- Mill-galvanized steel: 11 ga and 13 ga.
- Hot rolled, pickled and oiled carbon steel: 11 ga . and 13 ga .
- 24 ", $30^{\prime \prime}$ and $36^{\prime \prime}$ lengths.
- $5^{\prime \prime}, 7^{\prime \prime} 10^{\prime \prime}$ and $12^{\prime \prime}$ (nominal) widths.
- $1^{1 / 1 / 2^{\prime \prime}}$ and $2^{\prime \prime}$ channel heights.

PERF-O GRIP Carrier Plates

Carrier plates allow you to create your own custom stair treads. They are sold by the pair. (2 plates = one pair).

PERF-O-GRIP Carrier Plate

Product	Nominal Width	" ${ }^{\text {" }}$	"B"	"C"	"D"
2-Hole Tread	5" (127mm)	$4^{15} / 16^{\prime \prime}$ (125 mm)	$1^{1 / 22^{\prime \prime}}(38 \mathrm{~mm})$	$3 / 4^{\prime \prime}(19 \mathrm{~mm})$	2" (51mm)
		$4^{15 / 16^{\prime \prime}}$ (125mm)	2" (51mm)	1" (25mm)	2" (51mm)
3-Hole Tread	7" (178mm)	$6^{15} / 16^{\prime \prime}$ (176 mm)	1/1/2" $(38 \mathrm{~mm})$	$3 / 4^{\prime \prime}(19 \mathrm{~mm})$	4" $(102 \mathrm{~mm})$
		$6^{15 / 16^{\prime \prime}}$ (176mm)	2" (51mm)	$1^{\prime \prime}(25 \mathrm{~mm})$	4" (102mm)
5-Hole Tread	$10^{\prime \prime}(254 \mathrm{~mm})$	$9^{15 / 16 " 1}(254 \mathrm{~mm})$	$1^{1 / 2 \prime 2}(38 \mathrm{~mm})$	3/4" ${ }^{\prime \prime}$ (19mm)	7" (178mm)
		$9^{15 / 16^{\prime \prime}}$ (254mm)	2" (51mm)	$1^{\prime \prime}(25 \mathrm{~mm})$	7" (178mm)
6-Hole Tread	$12^{\prime \prime}(305 \mathrm{~mm})$	115/16" (303mm)	11/2" (38mm)	$3 / 4^{\prime \prime}$ (19 mm)	9" (227mm)
		$11^{15 / 16 " \prime}(303 \mathrm{~mm})$	2" (51mm)	$1^{\prime \prime}(25 \mathrm{~mm})$	9" (227mm)

Specifications - PERF-O-GRIP ${ }^{\text {w" }}$

Notes to architect

1. PERF-O GRIP and PERF-O GRIP 2 gratings are intended for general purpose use in plants and process facilities by industry, commerce, and public utilities, and on air, water, and surface, for both mobile and stationary equipment.
2. PERF-O GRIP and PERF-O GRIP 2 stair treads are intended for utility stairs and fire escapes in commercial, public and private buildings where local code permits. They are not intended for staircases used regularly by the general public where flat closed surfaces are desired. For this type of application, see TRACTION-TREAD ${ }^{m m}$ stair treads and sheets.
3. These specifications are presented as a general guide to the architect or structural engineer in preparing project specifications. Allowable loads, spans and other limiting conditions presented in this catalog offer product data for use in design and construction.
4. All supports should provide a smooth, level, $1^{1} / 2^{\prime \prime}$ minimum bearing surface, free of burrs, bridging, welds or other irregularities.
5. Random cut ends and diagonal or circular cut exposed edges should be banded with a bar at least $1 / 8^{\prime \prime}$ thick and equal to the overall side channel depth of grating welded at contact points at the discretion of the design engineer.
6. Bolted connections, except stair or ladder tread attachment to stringer channels, may be replaced by welded connections that develop the same strength.

Part 1: General

1.1 Scope

The contractor shall furnish and install PERF-0-GRIP and PERF-O-GRIP 2 Gratings and Stair Treads, as specified and shown on the drawings.

1.2 Qualifications

PERF-O-GRIP and PERF-O-GRIP 2 Gratings, Stair Tread and accessories, unless otherwise indicated, shall be manufactured by Eaton's B-Line Business, and shall be installed in accordance with its current printed directions. Safety surface shall be slip-resistant in all directions.

1.3 Submittals

The contractor shall furnish shop drawings of grating layout, framing and supports, unit dimensions and sections, type and location of fasteners and welds.

1.4 Storage and Handling

All materials shall be stored and handled to avoid damage. Damaged materials shall be removed from the premises.

Part 2: Products

2.1 Grating Materials

a. Type: (PERF-O-GRIP and PERF-O-GRIP 2 Gratings) (PERF-O-GRIP Walkways)
b. Metal and Finish: Standard (mill-galvanized steel, ASTM A924) (stainless steel, alloy Types 304-2B/D) (aluminum, alloy 5052 H32); Special order (carbon steel — hot rolled, pickled and oiled, ASTM-A569) (stainless steel, alloy Type 316-2B/D)
c. Metal gauge: (13-ga. steel) (11-ga. steel) (16-ga. stainless steel) (. 125 " aluminum)
d. Section width: $\left(5^{\prime \prime}\right)\left(7^{\prime \prime}\right)\left(10^{\prime \prime}\right)\left(12^{\prime \prime}\right)\left(18^{\prime \prime}\right)\left(24^{\prime \prime}\right)\left(30^{\prime \prime}\right)$ plank; $\left(24^{\prime \prime}\right)\left(30^{\prime \prime}\right)\left(36^{\prime \prime}\right)$ walkway
e. Channel height: Safety Grating $\left(1^{1} / 2^{\prime \prime}\right)\left(2^{\prime \prime}\right)\left(3^{\prime \prime}\right)\left(4^{\prime \prime}\right)$ plank; ($\left.5^{\prime \prime}\right)$ Walkway Grating - OSHA compliant; Canadian OH \& S Compliant
f. Standard lengths: $\left(10^{\prime}-0^{\prime \prime}\right)\left(12^{\prime}-0^{\prime \prime}\right)\left(20^{\prime}-0^{\prime \prime}\right)\left(24^{\prime}-0^{\prime \prime}\right)$

2.2 Stair Tread Materials

a. Type: (PERF-0-GRIP and PERF-0-GRIP 2 Stair Tread)
b. Metal and Finish: Standard (mill-galvanized steel, ASTM A924) (stainless steel, alloy Types 304-2B/D) (aluminum, alloy 5052 H32); Special order (carbon steel — hot rolled, pickled and oiled, ASTM-A1011) (stainless steel, alloy Type 316-2B/D)
c. Metal gauge: (13-ga. steel) (11-ga. steel) (16-ga. stainless steel) (. 125 " aluminum)
d. Tread Depth: Standard ($10^{\prime \prime}$); Special Order ($5^{\prime \prime}$) ($7^{\prime \prime}$) ($12^{\prime \prime}$)
e. Channel height: Standard ($1^{1} / 2^{\prime \prime}$); Special Order ($2^{\prime \prime}$)
f. Span or Width of Staircase: ($24^{\prime \prime}$) ($\left.30^{\prime \prime}\right)\left(36^{\prime \prime}\right)$

2.3 Accessories

a. Bolt Seats: Standard (mill-galvanized steel, ASTM A924); Special order (carbon steel — hot rolled, pickled and oiled, ASTM A569) (aluminum, alloy 5052-H32); (stainless steel, alloy Types 304-2B/D) (stainless steel, alloy Type 316-2B/D)
b. "J" Clip Attachment: Standard (mill-galvanized steel, ASTM A924); Special order (carbon steel — hot rolled, pickled and oiled, ASTM A569) (aluminum, alloy 5052-H32); (stainless steel, alloy Types 304-2B/D) (stainless steel, alloy Type 316-2B/D)

Specifications - PERF-O-GRIP ${ }^{\text {m }}$

c. Midsupport Clip: Standard (mill-galvanized steel, ASTM A924); Special order (carbon steel — hot rolled, pickled and oiled, ASTM A1011) (aluminum, alloy 5052-H32); (stainless steel, alloy Types 304-2B/D) (stainless steel, alloy Type 316-2B/D)
d. Surface Splice Kit: Standard (mill-galvanized steel, ASTM A924); Special order (carbon steel — hot rolled, pickled and oiled, ASTM A1011) (aluminum, alloy 5052-H32); (stainless steel, alloy Types 304-2B/D) (stainless steel, alloy Type 316-2B/D)
e. Walkway Splice Kit: Standard (mill-galvanized steel, ASTM A924); Special order (carbon steel — hot rolled, pickled and oiled, ASTM A1011) (aluminum, alloy 5052-H32); (stainless steel, alloy Types 304-2B/D) (stainless steel, alloy Type 316-2B/D)
f. Universal Handrail Bracket for Walkways: Eliminates unnecessary substructure for supporting handrail posts.

Part 3: Execution

3.1 Condition of surfaces

Prior to grating installation, contractor shall inspect supports for correct size, layout and alignment and verify that surfaces to receive grating are free of debris. The contractor shall report to the design or consulting engineer or owner's agent in writing any defects considered detrimental to proper application of grating so defects can be remedied before grating is applied.

3.2 Grating installation

Install grating in accordance with manufacturer's recommendations and shop drawings. Position grating sections flat and square with ends bearing min. $1^{1 / 2} 2^{\prime \prime}$ on supporting structure. Keep grating sections at least $1 / 4^{\prime \prime}$ away from vertical steel sections and $1 / 2^{\prime \prime}$ from concrete walls. Installation clearances are built into this product. Allow clearance at joints between sections of max. ${ }^{1} / 4^{\prime \prime}$ at side channels and max. ${ }^{3 / 8^{\prime \prime}}$ at ends. When specified, band random cut ends and diagonal or circular cut exposed edges with a min. $1 / 8^{\prime \prime}$ thick bar welded at contact points.

3.3 Grating attachment

Attach grating to supports without warp or deflection as follows:
a. Single plank application: Secure plank ends to supporting members at every point of contact. Use(2) PERF-0 GRIP Bolt Seats or "J" Clip Assemblies at each end or secure both side channels at each end to supports by fusion welding with $1 / 8^{\prime \prime}$ fillet welds, $1^{\prime \prime}$ long.
b. Multiple plank application: Secure perimeter plank to supporting members at every point of contact and intermediate grating sections with at least (1) attachment each end of plank, on alternate sides. For added rigidity when span exceeds ($6^{\prime}-0^{\prime \prime}$) ($8^{\prime}-0^{\prime \prime}$), attach side channels of adjacent plank together (at mid-point of span) using mid support clip.
c. Welded attachment: Secure side channels to supports by fusion welding with $1 / 8^{\prime \prime}$ fillet welds, $1^{\prime \prime}$ long. Weld adjacent planks together with $1 / 8^{\prime \prime}$ fillet welds, $1^{\prime \prime}$ long, 24 " $0 . c$. staggered top and bottom.
d. Clip attachment: Secure intermediate planks to supports using Bolt Seat and "J" Clip Assembly. Use Bolt Seat with $3 / 8^{\prime \prime}$ carriage bolts and nuts for securing perimeter planks. Fasten adjacent side rails together with mid support clip or $3 / 8^{\prime \prime}$ machine bolts and nuts through locally drilled holes.

3.4 Stair Tread Installation

Install PERF-O GRIP and PERF-O GRIP 2 stair treads as shown on the drawings. Fasten treads to stair stringers with $3 / 8^{\prime \prime} \times 1$ " machine bolts and nuts.

How To Order

Technical Assistance
For technical assistance not found in this catalog, contact your local PERF-0-GRIP and PERF-0-GRIP ${ }^{2 m}$ Gratings Distributor, or contact our Technical Service Department at 1-800-582-3643 (phone) or 1-770-268-7213 (fax).
PERF-0 GRIP and PERF-O GRIP 2 grating are stocked in all major markets. For the finest in slip-resistant grating and stair treads, contact us or go to www.bline.com to locate your local distributor. You will receive skilled consulting service on your specific requirements.

Fabrication Service

On large jobs, we estimate, quote, detail and fabricate to your requirement. After receipt of order, layout drawings are prepared for easy installation.
Notice: We shall not be liable for incidental and consequential damages, directly or indirectly sustained, nor for any loss caused by application of these goods not in accordance with current printed instructions or for other than the intended use. Our liability is expressly limited to replacement of defective goods. Any claims shall be deemed waived unless made in writing to us within thirty (30) days from date it was or reasonably should have been discovered.
See terms and conditions at www.cooperbline.com/legal.
U.S. Customer Service Center is staffed Monday through Friday from 7 a.m. to 5:00 p.m. Central Standard Time.
For more information visit, www.cooperbline.com/grating.

Eaton's B-Line Business
United States
509 West Monroe Street
Highland, IL 62249
United States
Phone: (800) 582-3643
www.cooperbline.com/contactus

Eaton

1000 Eaton Boulevard
Cleveland, OH 44122
United States
Eaton.com

B-Line Business
509 West Monroe Street
Highland, IL 62249
Phone: 800-851-7415
Fax: 618-654-1917
www.cooperbline.com

Powering Business Worldwide
© 2013 Eaton
All Rights Reserved
Printed in USA
Publication No. GSPOG-13
December 2013

Eaton is a registered trademark
All other trademarks are property of their respective owners.

